一种基于最大后验的扫描雷达角超分辨成像方法
1. 专利的研究目标与实际问题意义
研究目标:
专利旨在解决实波束扫描雷达(Real Beam Scanning Radar)在方位向分辨率受限于天线孔径尺寸的问题,提出一种基于最大后验概率(Maximum A Posteriori, MAP)的超分辨成像方法,突破系统固有分辨率限制。核心目标是通过贝叶斯框架下的迭代优化,抑制噪声敏感性和计算复杂度,提升低信噪比(Low Signal-to-Noise Ratio, SNR)环境下的成像质量。
实际问题与产业意义:
实波束扫描雷达在军事(如对海探测)和民用领域(如飞机盲降导航)需高分辨成像能力,但传统方法面临两大挑战:
- 分辨率限制:方位向分辨率由波长和天线尺寸决定( θ ∝ λ / D \theta \propto \lambda/D θ∝λ/D),难以通过硬件提升。
- 噪声敏感性:现有方法(如截断奇异值分解TSVD、自适应迭代方法IAA)在低SNR下成像质量差或计算复杂度高。
专利通过MAP框架结合噪声建模和迭代优化,显著提升方位向分辨率和抗噪能力,对复杂电磁环境下的雷达系统具有重要应用价值。
2. 专利提出的新方法、模型与公式
2.1 信号模型与卷积反演框架
关键步骤:
-
回波信号建模:
雷达发射线性调频信号(Linear Frequency Modulation, LFM),接收回波经脉冲压缩和距离走动校正后,转化为卷积形式:y = H x + n y = Hx + n y=Hx+n
其中, y y y为回波信号向量, H H H为天线方向图构成的卷积矩阵, x x x为目标散射系数, n n n为噪声。卷积矩阵构造:
H H H由天线方向图函数 w a ( t ) w_a(t) wa(t)采样生成,结构为块对角矩阵:
H = [ H 1 ⋱ H 1 ] M N × M N H = \begin{bmatrix} H_1 & & \\ & \ddots & \\ & & H_1 \end{bmatrix}_{MN \times MN} H= H1⋱H1 MN×MN
每个子矩阵 H 1 H_1 H