一种基于最大后验的扫描雷达角超分辨成像方法——论文阅读

1. 专利的研究目标与实际问题意义

研究目标
专利旨在解决实波束扫描雷达Real Beam Scanning Radar)在方位向分辨率受限于天线孔径尺寸的问题,提出一种基于最大后验概率Maximum A Posteriori, MAP)的超分辨成像方法,突破系统固有分辨率限制。核心目标是通过贝叶斯框架下的迭代优化,抑制噪声敏感性和计算复杂度,提升低信噪比(Low Signal-to-Noise Ratio, SNR)环境下的成像质量。

实际问题与产业意义
实波束扫描雷达在军事(如对海探测)和民用领域(如飞机盲降导航)需高分辨成像能力,但传统方法面临两大挑战:

  1. 分辨率限制:方位向分辨率由波长和天线尺寸决定( θ ∝ λ / D \theta \propto \lambda/D θλ/D),难以通过硬件提升。
  2. 噪声敏感性:现有方法(如截断奇异值分解TSVD、自适应迭代方法IAA)在低SNR下成像质量差或计算复杂度高。
    专利通过MAP框架结合噪声建模和迭代优化,显著提升方位向分辨率和抗噪能力,对复杂电磁环境下的雷达系统具有重要应用价值。

2. 专利提出的新方法、模型与公式

2.1 信号模型与卷积反演框架

关键步骤

  1. 回波信号建模
    雷达发射线性调频信号(Linear Frequency Modulation, LFM),接收回波经脉冲压缩和距离走动校正后,转化为卷积形式:

    y = H x + n y = Hx + n y=Hx+n
    其中, y y y为回波信号向量, H H H为天线方向图构成的卷积矩阵, x x x为目标散射系数, n n n为噪声。

    卷积矩阵构造
    H H H由天线方向图函数 w a ( t ) w_a(t) wa(t)采样生成,结构为块对角矩阵:
    H = [ H 1 ⋱ H 1 ] M N × M N H = \begin{bmatrix} H_1 & & \\ & \ddots & \\ & & H_1 \end{bmatrix}_{MN \times MN} H= H1H1 MN×MN
    每个子矩阵 H 1 H_1 H

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

青铜锁00

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值