pytorch dataloader使用教程

dataloader是pytorch之中可以灵活地取出数值的一个相应类,首先需要将自己使用的数据用Dataset封装起来,然后打包成为DataLoader变量进行操作

import torch
from torch.utils.data import Dataset, DataLoader
x = torch.randn(128, 3)
y = torch.randn(128, 1)
# 1. 用Dataset封装数据集,仅做示范,实际可直接用TensorDataset封装
class MyDataset(Dataset):
    def __init__(self, x, y):
        assert x.size(0)==y.size(0)
        self.x, self.y = x, y
    #定义初始化变量
    def __getitem__(self, idx):
        return (self.x[idx], self.y[idx])
    #定义每次取出的对应数值
    def __len__(self):
        return self.x.size(0)
    #定义tensor的总长度
# 2. 用DataLoader定义数据批量迭代器
dataset = MyDataset(x,y)
MyDataLoader = DataLoader(dataset=dataset,shuffle=True,batch_size=4)
for data_iter1,data_iter2 in MyDataLoader:
    print('data_iter1 = ')
    print(data_iter1)
    print('data_iter2 = ')
    print(data_iter2)
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值