问题描述
给定一个N阶矩阵A,输出A的M次幂(M是非负整数)
例如:
A =
1 2
3 4
A的2次幂
7 10
15 22
输入格式
第一行是一个正整数N、M(1<=N<=30, 0<=M<=5),表示矩阵A的阶数和要求的幂数
接下来N行,每行N个绝对值不超过10的非负整数,描述矩阵A的值
输出格式
输出共N行,每行N个整数,表示A的M次幂所对应的矩阵。相邻的数之间用一个空格隔开
样例输入
2 2
1 2
3 4
样例输出
7 10
15 22
算法思路
1.输入矩阵的阶次和幂次—转成整型
2.输入矩阵元素—for循环或者map函数映射
3.考虑特殊幂次情况:矩阵的0次幂是单位矩阵E;矩阵的一次幂输出原矩阵
4.定义矩阵平方函数,在for循环中调用该函数,循环次数为幂次-1
5.矩阵乘法的定义:AXB=C,Cij=A的第i行元素分别xB的第j列元素再求和
参考代码
n, m = list(map(int,input().split()))
matrix = [list(map(int,input().split())) for i in range(n)]
# 每执行一次multi函数,temp都会更新
def multi(n, mat1, mat2):
out = []
for i in range(n):
result = []
for j in range(n):
result0 = 0
for k in range(n):
result0 += mat1[i][k] * mat2[k][j]
result.append(result0)
out.append(result)
return out
# 定义矩阵平方函数再以(幂次数-1)为循环次数执行矩阵平方函数
# 任何非零数的零次幂都是1
# 矩阵的0次幂是单位正矩阵
if m == 0:
# 这种写法下temp =[[0,0][0,0]]
temp = [[0] * n for i in range(n)]
# print(temp)
for i in range(n):
# for j in range(n):
# if i == j:
temp[i][i] = 1
else:
temp = matrix
for i in range(m-1):
temp = multi(n, temp, matrix)
for i in range(n):
for j in range(n):
print(temp[i][j], end=' ')
print(' ')