思路: 根据tarjan算法求最强连通分支,然后找出每个联通分支中的最小值,并统计其数量,乘法定理解决方法数。
#include <iostream>
#include <cstdio>
#include <cmath>
#include <algorithm>
#include <cstring>
#include <vector>
#include <stack>
using namespace std;
#define MEM(a,b) memset(a, b, sizeof(a))
#define _FOR_I_(_offx, _offy, _offz) for(i=_offx; i<=_offy; i+=_offz)
#define INT64 __int64
const int N = 100100;
const int E = 300300;
const int INF = 0x7fffffff;
const int MODNUM = 1000000007;
struct Node{
int m, num;
};
int n, val[N];
vector<int> v[N];
int scc_cnt, dfs_clock;
int DFN[N], cmp[N], low[N];
stack<int> s;
Node res[N];
void tarjan(int u){
DFN[u] = low[u] = ++dfs_clock;
s.push(u);
for(int i = 0; i < v[u].size(); ++ i){
if(!DFN[ v[u][i] ]) {
tarjan(v[u][i]);
low[u] = min(low[u], low[ v[u][i] ]);
}
else if(!cmp[ v[u][i] ]){
low[u] = min(low[u], DFN[ v[u][i] ]);
}
}
if(low[u] == DFN[u]){
++ scc_cnt;
for(;;){
int x = s.top();
s.pop();
cmp[x] = scc_cnt;
if(x == u) break;
}
}
}
void scc(){
dfs_clock = scc_cnt = 0;
MEM(DFN, 0);
MEM(cmp, 0);
int i;
_FOR_I_(1, n, 1)
{
if(!DFN[i]) tarjan(i);
}
}
int main()
{
scanf("%d", &n);
for(int i = 1; i <= n; i ++)
scanf("%d", &val[i]);
int m;
scanf("%d", &m);
while(m --)
{
int f, t;
scanf("%d%d", &f, &t);
v[f].push_back(t);
}
// tarjan method to find strongly connected components
scc();
int i;
_FOR_I_(1, scc_cnt, 1)
res[i].m = INF;
// find minimum money for each strongly connected components
_FOR_I_(1, n, 1){
if(res[ cmp[i] ].m == val[i]) ++res[ cmp[i] ].num;
if(res[ cmp[i] ].m > val[i]){
res[ cmp[i] ].m = val[i];
res[ cmp[i] ].num = 1;
}
}
// count the value
INT64 sum_val = 0, sum = 1;
_FOR_I_(1, scc_cnt, 1){
sum_val += res[i].m;
sum = sum * res[i].num % MODNUM;
}
printf("%I64d %I64d\n", sum_val, sum);
return 0;
}