分类评估指标
文章平均质量分 92
lehai123
这个作者很懒,什么都没留下…
展开
-
AlexNet神经网络模型复现
AlexNet是2012年ILSVRC 2012(ImageNet Large Scale Visual Recognition Challenge)竞赛的冠军网络,分类准确率由传统方法的 70%+提升到 80%+(当时传统方法已经进入瓶颈期,所以这么大的提升是非常厉害的)。它是由Hinton和他的学生Alex Krizhevsky设计的。也是在那年之后,深度学习开始迅速发展。下图是从AlexNet原论文中截取的网络结构图。在图中有上下两个部分是因为作者使用两块GPU进行并行训练,所以上下两个部分结构是原创 2020-11-11 20:48:20 · 942 阅读 · 0 评论 -
机器学习、深度学习模型评估指标—整理笔记
提示:写完文章后,目录可以自动生成,如何生成可参考右边的帮助文档目录一、混淆矩阵的定义二、准确率(Accuracy), 精确率(Precision), 召回率(Recall)和F1-Measure1.准确率(Accuracy)2.精确率(Precision)3.召回率(Recall)4.F1 score三、ROC曲线和AUC1.ROC曲线2.AUC(Area under Curve)3.P-R曲线一、混淆矩阵的定义(1)若一个实例是正类,但是被预测成为正类,即为真正类(True Postive T..原创 2020-11-01 16:07:13 · 778 阅读 · 1 评论