题目描述:
输入某二叉树的前序遍历和中序遍历的结果,请重建出该二叉树。假设输入的前序遍历和中序遍历的结果中都不含重复的数字。例如输入前序遍历序列{1,2,4,7,3,5,6,8}和中序遍历序列{4,7,2,1,5,3,8,6},则重建二叉树并返回。
注:传入两个数组,一个是前序遍历序列,一个是中序遍历序列。
解答:在二叉树的前序遍历序列中,第一个数字总是树的根节点的值。但在中序遍历中,根节点的值在序列的中间,左子树的结点的值位于根节点的值的左边,而右子树的结点的值位于根节点的右边。因此我们需要扫描中序遍历序列,才能找到根节点的值。
如图所示,前序遍历序列的第一个数字1就是根节点的值。扫描中序遍历序列,就能确定根节点的值的位置。根据中序遍历的特点,在根节点的值1前面3个数字都是左子树结点的值,位于1后面的数字都是右子树结点的值。
由于中序遍历序列中,有3个数字是左子树结点的值,因此左子树总共有3个左子结点。同样,在前序遍历的序列中,根节点后面的3个数字就是3个左子树结点的值,再后面的所有数字都是右子树结点的值。这样我们就在前序遍历和中序遍历两个序列中,分别找到了左右子树对应的子序列。
既然我们已经分别找到了左、右子树的前序遍历序列和中序遍历序列,我们可以用同样的方法分别去构建左右子树。也就是说,接下来的事情可以用递归的方法去完成。
实现代码:
/**
* Definition for binary tree
* public class TreeNode {
* int val;
* TreeNode left;
* TreeNode right;
* TreeNode(int x) { val = x; }
* }
*/
public class Solution {
public TreeNode reConstructBinaryTree(int [] pre,int [] in) {
if(pre == null || in == null){
return null;
}
TreeNode root = reConstructBinaryTree(pre,0,pre.length-1,in,0,in.length-1);
return root;
}
public TreeNode reConstructBinaryTree(int [] pre,int startPre,int endPre,int [] in,int startIn,int endIn) {
if(startPre > endPre || startIn > endIn){
return null;
}
TreeNode root = new TreeNode(pre[startPre]);
for(int i = startIn;i <= endIn;i++){
if(in[i] == pre[startPre]){
root.left = reConstructBinaryTree(pre,startPre+1,startPre+i-startIn,in,startIn,i-1);
root.right = reConstructBinaryTree(pre,startPre+1+i-startIn,endPre,in,i+1,endIn);
}
}
return root;
}
}