第一章 均匀传输线理论
文章目录
一、传输线理论
传输线理论架起了场分析和基本电路理论之间的桥梁,在微波网络分析中具有重要意义,电路理论和传输线理论之间的关键差别是电尺寸(传输线的物理长度和传输信号波长的比值)
。为明确二者的区别与联系,我们应该先建立起长线
和短线
的概念。
在基本电路理论分析时,我们认为电路的物理尺寸远小于传输信号的波长,因此在信号传播路径上可以认为各个点信号的幅度和相位没有差别,这样的线成为短线
。
在传输线理论分析时,我们认为电路的物理尺寸远大于传输信号的波长,那么此时就不能简单的认为在传输线上各点的电压电流信号的幅度或相位一致,这样的线成为长线
。而传输线理论正是要对长线
进行分析。
二、建立均匀传输线的物理模型、求解电报方程、分析传输线参数
建立物理模型
为了分析均匀传输线,我们引入一个无穷小长度
△
z
\bigtriangleup z
△z将传输线建模为一个集总元件电路
,如下图所示,在传输线方向上将其等效为阻抗
R
△
z
\ R \bigtriangleup z
R△z、电感
L
△
z
\ L \bigtriangleup z
L△z,在两条传输线之间的导纳和电容等效为
G
△
z
\ G \bigtriangleup z
G△z、
C
△
z
\ C\bigtriangleup z
C△z。(为了与传统电路分析一致,我们认为源方向为z正方向)

接下来我们将根据该模型求解传输线上的电流电压分布。
电报方程
-
推导电报方程
在上述模型基础上,由基尔霍夫电压定律(KVL)得:
u ( z + △ z , t ) = u ( z , t ) + R △ z i ( z , t ) + L △ z ∂ i ( z , t ) ∂ t u(z+\bigtriangleup z,t)=u(z,t)+R \bigtriangleup z i(z,t)+L\bigtriangleup z\frac{\partial i(z,t)}{\partial t} u(z+△z,t)=u(z,t)+R△zi(z,t)+L△z∂t∂i(z,t) 化简得
u ( z + △ z , t ) − u ( z , t ) = R △ z i ( z , t ) + L △ z ∂ i ( z , t ) ∂ t (1) u(z+\bigtriangleup z,t)-u(z,t)=R \bigtriangleup z i(z,t)+L\bigtriangleup z\frac{\partial i(z,t)}{\partial t}\tag{1} u(z+△z,t)−u(z,t)=R△zi(z,t)+L△z∂t∂i(z,t)(1)
同理由基尔霍夫电流定律(KCL)得
i ( z + △ z ) = i ( z , t ) + G △ z u ( z , t ) + C △ z ∂ u ( z , t ) ∂ t i(z+\bigtriangleup z)=i(z,t)+G \bigtriangleup z u(z,t)+C\bigtriangleup z\frac{\partial u(z,t)}{\partial t} i(z+△z)=i(z,t)+G△zu(z,t)+C△z∂t∂u(z,t) 化简得
i ( z + △ z ) − i ( z , t ) = G △ z u ( z , t ) + C △ z ∂ u ( z , t ) ∂ t (2) i(z+\bigtriangleup z)-i(z,t)=G \bigtriangleup z u(z,t)+C\bigtriangleup z\frac{\partial u(z,t)}{\partial t}\tag{2} i(z+△z)−i(z,t)=G△zu(z,t)+C△z∂t∂u(z,t)(2) 综上,根据KVL和KCL可得如下方程:
{ u ( z + △ z , t ) − u ( z , t ) = R △ z i ( z , t ) + L △ z ∂ i ( z , t ) ∂ t i ( z + △ z , t ) − i ( z , t ) = G △ z u ( z , t ) + C △ z ∂ u ( z , t ) ∂ t (3) \begin{cases} u(z+\bigtriangleup z,t)-u(z,t)=R \bigtriangleup z i(z,t)+L\bigtriangleup z\frac{\partial i(z,t)}{\partial t} \\ i(z+\bigtriangleup z,t)-i(z,t)=G \bigtriangleup z u(z,t)+C\bigtriangleup z\frac{\partial u(z,t)}{\partial t} \end{cases}\tag{3} {u(z+△z,t)−u(z,t)=R△zi(z,t)+L△z∂t∂i(z,t)i(z+△z,t)−i(z,t)=G△zu(z,t)+C△z∂t∂u(z,t)(3) 两边同时除以 △ z \bigtriangleup z △z
{ u ( z + △ z , t ) − u ( z , t ) △ z = R i ( z , t ) + L ∂ i ( z , t ) ∂ t i ( z + △ z , t ) − i ( z , t ) △ z = G u ( z , t ) + C ∂ u ( z , t ) ∂ t (4) \begin{cases} \frac {u(z+\bigtriangleup z,t)-u(z,t)}{\bigtriangleup z}=R i(z,t)+L\frac{\partial i(z,t)}{\partial t} \\ \frac{i(z+\bigtriangleup z,t)-i(z,t)}{\bigtriangleup z } =G u(z,t)+C\frac{\partial u(z,t)}{\partial t} \end{cases}\tag{4} {△zu(z+△z,t)−u(z,t)=Ri(z,t)+L∂t∂i(z,t)△zi(z+△z,t)−i(z,t)=Gu(z,t)+C∂t∂u(z,t)(4) 并对其取极限可得:
{ ∂ u ( z , t ) ∂ z = R i ( z , t ) + L ∂ i ( z , t ) ∂ t ∂ i ( z , t ) ∂ z = G u ( z , t ) + C ∂ u ( z , t ) ∂ t (5) \begin{cases} \frac{\partial u(z,t)}{\partial z} =R i(z,t)+L\frac{\partial i(z,t)}{\partial t} \\ \frac{\partial i(z,t)}{\partial z}=G u(z,t)+C\frac{\partial u(z,t)}{\partial t} \end{cases}\tag{5} {∂z∂u(z,t)=Ri(z,t)+L∂t∂i(z,t)∂z∂i(z,t)=Gu(z,t)+C∂t∂u(z,t)(5)
这样我们就得到了一般传输线情况下电压电流满足的解,该方程也被称为电报方程
。
-
时谐电磁场情况下求解
由于在实际情况中我们一般使用时谐电磁场(场具有正余弦形式)
进行分析,因此我们继续在电报方程的基础上求出时谐电磁场情况下对应的电压电流分布 u ( z , t ) , i ( z , t ) u(z,t),i(z,t) u(z,t),i(z,t)。
我们假设电压和电流的形式为(其中 U m → , I m → \overrightarrow{U_{m}},\overrightarrow{I_{m}} Um,Im为信号的复振幅)
{ u ( z , t ) = R e [ U m e j ϕ e j ω t ] = R e [ U m → e j ω t ] i ( z , t ) = R e [ I m e j ϕ e j ω t ] = R e [ I m → e j ω t ] (6) \begin{cases} u(z,t)=Re[U_{m}e^{j\phi } e^{j\omega t}] =Re[\overrightarrow{U_{m}} e^{j\omega t} ]\\ i(z,t)=Re[I_{m}e^{j\phi } e^{j\omega t}] =Re[\overrightarrow{I_{m}} e^{j\omega t} ] \end{cases}\tag{6} {u(z,t)=Re[Umejϕejωt]=Re[Umejωt]i(z,t)=Re[Imejϕejωt]=Re[Imejωt](6)
为了便于书写,我们令 U ( z ) = U m → U(z)=\overrightarrow{U_{m}} U(z)=Um, I ( z ) = I m → I(z)=\overrightarrow{I_{m}} I(z)=Im,那么式(6)
变为:
{ u ( z , t ) = R e [ U ( z ) e j ω t ] i ( z , t ) = R e [ I ( z ) e j ω t ] (7) \begin{cases} u(z,t)=Re[U(z) e^{j\omega t} ]\\ i(z,t)=Re[I(z) e^{j\omega t} ] \end{cases}\tag{7} {u(z,t)=Re[U(z)ejωt]i(z,t)=Re[I(z)ejωt](7)
由式(7)
便得到:
{ ∂ u ( z , t ) ∂ z = R e [ d U ( z ) d z e j ω t ] , ∂ i ( z , t ) ∂ z = R e [ d I ( z ) d z e j ω t ] ∂ u ( z , t ) ∂ t = R e [ j ω U ( z ) e j ω t ] , ∂ i ( z , t ) ∂ t = R e [ j ω I ( z ) e j ω t ] (8) \begin{cases} \frac{\partial u(z,t)}{\partial z}=Re[\frac{\mathrm{d} U(z)}{\mathrm{d} z}e^{j\omega t} ] , & \frac{\partial i(z,t)}{\partial z}=Re[\frac{\mathrm{d} I(z)}{\mathrm{d} z}e^{j\omega t} ] \\ \frac{\partial u(z,t)}{\partial t}=Re[j\omega U(z)e^{j\omega t} ] , & \frac{\partial i(z,t)}{\partial t}=Re[j\omega I(z)e^{j\omega t} ] \end{cases}\tag{8} {∂z∂u(z,t)=Re[dzdU(z)ejωt],∂t∂u(z,t)=Re[jωU(z)ejωt],∂z∂i(z,t)=Re[dzdI(z)ejωt]∂t∂i(z,t)=Re[jωI(z)ejωt](8) 代入电报方程(5)
得:
{ R e [ d U ( z ) d z e j ω t ] = R e [ R I ( z ) e j ω t ] + R e [ j ω L I ( z ) e j ω t ] R e [ d I ( z ) d z e j ω t ] = R e [ G U ( z ) e j ω t ] + R e [ j ω C U ( z ) e j ω t ] (9) \begin{cases} Re[\frac{\mathrm{d} U(z)}{\mathrm{d} z}e^{j\omega t} ]=Re[RI(z)e^{j\omega t}]+Re[j\omega LI(z)e^{j\omega t} ]\\ Re[\frac{\mathrm{d} I(z)}{\mathrm{d} z}e^{j\omega t} ]=Re[GU(z)e^{j\omega t}]+Re[j\omega CU(z)e^{j\omega t} ] \end{cases}\tag{9} {Re[dzdU(z)ejωt]=Re[RI(z)ejωt]+Re[jωLI(z)ejωt]Re[dzdI(z)ejωt]=Re[GU(z)ejωt]+Re[jωCU(z)ejωt](9) 两边化简得到:
{ d U ( z ) d z = ( R + j ω L ) I ( z ) d I ( z ) d z = ( G + j ω C ) U ( z ) (10) \begin{cases} \frac{\mathrm{d} U(z)}{\mathrm{d} z}=(R+j\omega L)I(z) \\ \frac{\mathrm{d} I(z)}{\mathrm{d} z}=(G+j\omega C)U(z) \end{cases}\tag{10} {dzdU(z)=(R+jωL)I(z)dzdI(z)=(G+jωC)U(z)(10) 得到式(10)
后我们将其中的第一个式子对 z z z求导,得到:
d 2 U ( z ) d z 2 = ( R + j ω L ) d I ( z ) d z (11) \frac{\mathrm{d^{2} } U(z)}{\mathrm{d} z^{2} }=(R+j\omega L)\frac{\mathrm{d} I(z)}{\mathrm{d} z} \tag{11} dz2d2U(z)=(R+jωL)dzdI(z)(11) 然后我们将式(10)
中的第二个式子带入式(11)得:
d 2 U ( z ) d z 2 − Z Y U ( z ) = 0 \frac{\mathrm{d^{2} } U(z)}{\mathrm{d} z^{2} }-ZYU(z)=0 dz2d2U(z)−ZYU(z)=0 其中 Z = R + j ω L , Y = G + j ω C Z=R+j\omega L,Y=G+j\omega C Z=R+jωL,Y=G+jωC。同理也可得到 I ( z ) I(z) I(z)满足的微分方程。最终我们得到:
{ d 2 U ( z ) d z 2 − Z Y U ( z ) = 0 d 2 I ( z ) d z 2 − Z Y I ( z ) = 0 (12) \begin{cases} \frac{\mathrm{d^{2} } U(z)}{\mathrm{d} z^{2} }-ZYU(z)=0 \\ \frac{\mathrm{d^{2} } I(z)}{\mathrm{d} z^{2} }-ZYI(z)=0 \end{cases}\tag{12} {dz2d2U(z)−ZYU(z)=0dz2d2I(z)−ZYI(z)=0(12) 对于该二阶微分方程,我们可求出其通解为:
{ U ( z ) = U + ( z ) + U − ( z ) = A 1 e + γ z + A 2 e − γ z I ( z ) = I + ( z ) + I − ( z ) = 1 Z 0 ( A 1 e + γ z − A 2 e − γ z ) (13) \begin{cases} U(z)=U_{+}(z)+U_{-}(z)=A_{1}e^{+\gamma z}+A_{2}e^{-\gamma z} \\ I(z)=I_{+}(z)+I_{-}(z)=\frac{1}{Z_{0}} (A_{1}e^{+\gamma z}-A_{2}e^{-\gamma z}) \end{cases}\tag{13} {U(z)=U+(z)+U−(z)=A1e+γz+A2e−γzI(z)=I+(z)+I−(z)=Z01(A1e+γz−A2e−γz)(13) 其中 γ = Z Y = α + j β \gamma=\sqrt{ZY}=\alpha+j\beta γ=ZY=α+jβ称为传播常数,在这里, α \alpha α可以理解为衰减系数,代表了传输线上的损耗, β \beta β称为相移常数,我们将在下一节对其进行讨论。 Z 0 = R + j ω L G + j ω C Z_{0}= \frac{R+j\omega L}{G+j\omega C} Z0=G+jωCR+jωL称为特性阻抗, A 1 , A 2 A_{1},A_{2} A1,A2可由具体的初始条件确定。至此,我们终于求出时谐电磁场下的电压电流分布情况。可以发现,在传输线上的电压分为了两部分
,一部分是向负载方向
传播的入射电压 A 1 e + γ z A_{1}e^{+\gamma z} A1e+γz,一部分是被负载反射回(向源方向)
的反射电压 A 2 e − γ z A_{2}e^{-\gamma z} A2e−γz,二者叠加
得到总的电压 U ( z ) U(z) U(z),对于电流亦是如此,这便是传输线理论与基本电路分析的区别之处。
在得到
U
(
z
)
U(z)
U(z)、
I
(
z
)
I(z)
I(z)后,我们将式(13)
代入式(7)
即可得到瞬时电流电压
u
(
z
,
t
)
u(z,t)
u(z,t)、
i
(
z
,
t
)
i(z,t)
i(z,t)为:(
A
1
=
∣
A
1
∣
e
j
θ
1
A_{1}=|A_{1}|e^{j\theta_{1}}
A1=∣A1∣ejθ1、
A
2
=
∣
A
2
∣
e
j
θ
2
A_{2}=|A_{2}|e^{j\theta_{2}}
A2=∣A2∣ejθ2)
{
u
(
z
,
t
)
=
∣
A
1
∣
e
+
α
z
c
o
s
(
ω
t
+
β
z
+
θ
1
)
+
∣
A
2
∣
e
−
α
z
c
o
s
(
ω
t
−
β
z
+
θ
2
)
i
(
z
,
t
)
=
1
Z
0
[
∣
A
1
∣
e
+
α
z
c
o
s
(
ω
t
+
β
z
+
θ
1
)
+
∣
A
2
∣
e
−
α
z
c
o
s
(
ω
t
−
β
z
+
θ
2
)
]
(14)
\begin{cases} u(z,t)=\left | A_{1}\right |e^{+\alpha z}cos(\omega t+\beta z+\theta _{1})+\left | A_{2}\right |e^{-\alpha z}cos(\omega t-\beta z+\theta _{2}) \\ i(z,t)=\frac{1}{Z_{0}} \left [\left | A_{1}\right |e^{+\alpha z}cos(\omega t+\beta z+\theta _{1})+\left | A_{2}\right |e^{-\alpha z}cos(\omega t-\beta z+\theta _{2})\right ] \end{cases}\tag{14}
{u(z,t)=∣A1∣e+αzcos(ωt+βz+θ1)+∣A2∣e−αzcos(ωt−βz+θ2)i(z,t)=Z01[∣A1∣e+αzcos(ωt+βz+θ1)+∣A2∣e−αzcos(ωt−βz+θ2)](14)
至此,我们给出了时谐电磁场情况下的电压电流分布。由于
A
1
,
A
2
A_{1},A_{2}
A1,A2可由具体的初始条件确定,因此接下来我们将求出在给定负载电压、电流情况下的特解。
- 给定负载
Z
l
Z_{l}
Zl上的电压
U
l
U_{l}
Ul、电流
I
l
I_{l}
Il时对应特解
在负载处 z = 0 z=0 z=0,此时的电压为 U l U_{l} Ul、电流为 I l I_{l} Il,将其带入式(13)
得:
{ A 1 = 1 2 ( U l + I l Z 0 ) A 2 = 1 2 ( U l − I l Z 0 ) (15) \begin{cases} A_{1}=\frac{1}{2}(U_{l}+I_{l}Z_{0}) \\ A_{2}=\frac{1}{2}(U_{l}-I_{l}Z_{0}) \end{cases}\tag{15} {A1=21(Ul+IlZ0)A2=21(Ul−IlZ0)(15) 在无耗情况下,将 A 1 A_{1} A1、 A 2 A_{2} A2代入式(13)
得到:
[ U ( z ) I ( z ) ] = [ c o s ( β z ) j Z 0 s i n ( β z ) j 1 Z 0 s i n ( β z ) c o s ( β z ) ] [ U l I l ] (16) \begin{bmatrix} U(z)\\ I(z) \end{bmatrix}=\begin{bmatrix} cos(\beta z) &jZ_{0}sin(\beta z) \\ j\frac{1}{Z_{0}} sin(\beta z)&cos(\beta z) \end{bmatrix} \begin{bmatrix} U_{l} \\ I_{l} \end{bmatrix}\tag{16} [U(z)I(z)]=[cos(βz)jZ01sin(βz)jZ0sin(βz)cos(βz)][UlIl](16) 再代入式(7)
即可求得瞬时分布的电压电流。
在本小节中,我们从传输线模型出发,推导了电报方程,然后求解了时谐电磁场下的电压电流分布情况,得出了传输线上的电压是由入射波和反射波叠加形成的这一重要结论,最后,我们给出了一个特解。
传输线参数(特性阻抗 Z 0 \ Z_{0} Z0、传播常数 γ \gamma γ 、相移常数 β \beta β、相速 v p \ v_{p} vp)
- 特性阻抗
Z
0
\ Z_{0}
Z0
特性阻抗 Z 0 \ Z_{0} Z0是衡量传输线的一个固定参数,只与传输线本身的特性有关,其定义为:
Z 0 = U + ( z ) I + ( z ) = R + j ω L G + j ω C (17) Z_{0}=\frac{U_{+}(z)}{I_{+}(z)}=\sqrt{\frac{R+j\omega L}{G+j\omega C} } \tag{17} Z0=I+(z)U+(z)=G+jωCR+jωL(17) - 传播常数
γ
\gamma
γ
传播常数 γ \gamma γ:
γ = Z Y = ( R + j ω L ) ( G + j ω C ) = α + j β (18) \gamma=\sqrt{ZY}=\sqrt{(R+j\omega L)(G+j\omega C)}=\alpha+j\beta\tag{18} γ=ZY=(R+jωL)(G+jωC)=α+jβ(18) 当 α = 0 \alpha=0 α=0时被称为无耗传输线,此时 γ = j β \gamma=j\beta γ=jβ,代表着波在传输线上传输时没有损耗,只有相位的变化
,是一种理想情况。 - 相移常数
β
\beta
β
相移常数 β \beta β在距离尺度上衡量了相位的变化
,我们由前面场的分布可以知道电压电流一般都有 ∣ A ∣ e ± α z c o s ( ω t + β z + θ ) |A|e^{\pm \alpha z}cos(\omega t+\beta z +\theta) ∣A∣e±αzcos(ωt+βz+θ)形式的解,其中 ω t + β z + θ \omega t+\beta z +\theta ωt+βz+θ就是信号的相位,这表明在不同时刻t,不同距离z上的点具有不同相位
。
其中 ω \omega ω是从时间上衡量相位的变化,可以理解为信号传播了一定的时间有 ω t \omega t ωt的相位变化,那么在时域上传播了一个周期 T T T后相位改变了 2 π 2\pi 2π,由此我们就推出 ω T = 2 π \omega T=2\pi ωT=2π,即 ω = 2 π T \omega=\frac{2\pi}{T} ω=T2π的结论。 那么对于相移常数 β \beta β的分析也是如此,当在距离z上传播了一定的距离,那么总的相位变化就有 β z \beta z βz,特殊情况下当传播了一个波长 λ \lambda λ时,总的相位变化就有 2 π 2\pi 2π,于是我们就得出了下述结论:
β λ = 2 π ⟹ β = 2 π λ (19) \beta \lambda=2\pi \Longrightarrow \beta=\frac{2\pi}{\lambda}\tag{19} βλ=2π⟹β=λ2π(19) ω \omega ω和 β \beta β只是在不同的维度上衡量了相位的变化,没有根本质的改变,可以对比理解。 - 相速
v
p
\ v_{p}
vp
相速的定义是等相位面的传播速度
,也就是电磁波的传播速度。我们可以想象一下在一个时间片段 t t t内信号 ∣ A ∣ e ± α z c o s ( ω t + β z + θ ) |A|e^{\pm \alpha z}cos(\omega t+\beta z +\theta) ∣A∣e±αzcos(ωt+βz+θ)在进行传播,那么在这个时间 t t t内,从时间尺度
看有 ω t \omega t ωt的相位变化,与此同时,波也传播了一定的距离 z z z,并且在距离尺度
上有 β z \beta z βz的相位变化,二者应该相等,即:
ω t = β z \omega t=\beta z ωt=βz 那么相速为:
v p = z t = ω β (20) v_{p}=\frac{z}{t}=\frac{\omega}{\beta}\tag{20} vp=tz=βω(20)
三、传输线的阻抗与状态参量
在本小节中我们将了解一些描述传输线的参量。
输入阻抗
输入阻抗定义为传输线上的电压
U
(
z
)
U(z)
U(z)与电流
I
(
z
)
I(z)
I(z)之比,表示为:
Z
i
n
(
z
)
=
U
(
z
)
I
(
z
)
(21)
Z_{in}(z)=\frac{U(z)}{I(z)}\tag{21}
Zin(z)=I(z)U(z)(21) 在无耗状态下,将式(16)
带入得到输入阻抗的表达式为(负载阻抗为
Z
l
Z_{l}
Zl):
Z
i
n
(
z
)
=
U
(
z
)
I
(
z
)
=
c
o
s
(
β
z
)
U
l
+
j
Z
0
s
i
n
(
β
z
)
I
l
j
1
Z
0
s
i
n
(
β
z
)
U
l
+
c
o
s
(
β
z
)
I
l
=
Z
0
Z
l
+
j
Z
0
t
a
n
(
β
z
)
Z
0
+
j
Z
l
t
a
n
(
β
z
)
(22)
Z_{in}(z)=\frac{U(z)}{I(z)}=\frac{cos(\beta z)U_{l}+jZ_{0}sin(\beta z)I_{l}}{j\frac{1}{Z_{0}}sin(\beta z)U_{l}+cos(\beta z)I_{l}}=Z_{0}\frac{Z_{l}+jZ_{0}tan(\beta z)}{Z_{0}+jZ_{l}tan(\beta z)}\tag{22}
Zin(z)=I(z)U(z)=jZ01sin(βz)Ul+cos(βz)Ilcos(βz)Ul+jZ0sin(βz)Il=Z0Z0+jZltan(βz)Zl+jZ0tan(βz)(22)
- 输入阻抗
λ
2
\frac{\lambda}{2}
2λ不变性
观察式(22)
可以发现,由于三角函数 t a n tan tan具有周期性,因此输入阻抗也具有周期性,且其周期为 λ 2 \frac{\lambda}{2} 2λ,即:
z i n ( z + λ 2 ) = z i n ( z ) (23) z_{in}(z+\frac{\lambda}{2})=z_{in}(z)\tag{23} zin(z+2λ)=zin(z)(23) - 输入阻抗
λ
4
\frac{\lambda}{4}
4λ变换特性
z i n ( z ) × z i n ( z + λ 4 ) = Z 0 2 (24) z_{in}(z)\times z_{in}(z+\frac{\lambda}{4})=Z_{0}^{2}\tag{24} zin(z)×zin(z+4λ)=Z02(24) 输入阻抗 λ 4 \frac{\lambda}{4} 4λ变换特性在后续阻抗匹配时有很大作用,在此不做出推导。
反射系数
反射系数
Γ
(
z
)
\Gamma(z)
Γ(z)定义为反射信号与入射信号的比值
,有电压反射系数
Γ
u
(
z
)
\Gamma_{u}(z)
Γu(z)和电流反射系数
Γ
i
(
z
)
\Gamma_{i}(z)
Γi(z):
Γ
u
(
z
)
=
U
−
(
z
)
U
+
(
z
)
,
Γ
i
(
z
)
=
−
I
−
(
z
)
I
+
(
z
)
(25)
\Gamma_{u}(z)=\frac{U_{-}(z)}{U_{+}(z)},\Gamma_{i}(z)=-\frac{I_{-}(z)}{I_{+}(z)}\tag{25}
Γu(z)=U+(z)U−(z),Γi(z)=−I+(z)I−(z)(25)
二者互为相反数
,
Γ
u
(
z
)
\Gamma_{u}(z)
Γu(z)=-
Γ
i
(
z
)
\Gamma_{i}(z)
Γi(z),但是其具有一致的意义,因此我们常用电压反射系数
Γ
u
(
z
)
\Gamma_{u}(z)
Γu(z)作为反射系数
Γ
(
z
)
\Gamma(z)
Γ(z)来分析。
在无耗情况
下,将式(13)
代入得:
Γ
(
z
)
=
U
−
(
z
)
U
+
(
z
)
=
A
2
e
−
γ
z
A
1
e
+
γ
z
=
A
2
e
−
j
β
z
A
1
e
+
j
β
z
(26)
\Gamma (z)=\frac{U_{-}(z) }{U_{+}(z)} =\frac{A_{2}e^{-\gamma z} }{A_{1}e^{+\gamma z} } =\frac{A_{2}e^{-j\beta z} }{A_{1}e^{+j\beta z} }\tag{26}
Γ(z)=U+(z)U−(z)=A1e+γzA2e−γz=A1e+jβzA2e−jβz(26) 进一步,在知道负载
Z
l
Z_{l}
Zl的情况下,将式(15)
代入上式得:
Γ
(
z
)
=
A
2
A
1
e
−
j
2
β
z
=
Z
l
−
Z
0
Z
l
+
Z
0
e
−
j
2
β
z
=
∣
Γ
l
∣
e
j
ϕ
e
−
j
2
β
z
(27)
\Gamma (z)=\frac{A_{2}}{A_{1}}e^{-j2\beta z} =\frac{Z_{l}-Z_{0}}{Z_{l}+Z_{0}} e^{-j2\beta z}=|\Gamma_{l}|e^{j\phi }e^{-j2\beta z}\tag{27}
Γ(z)=A1A2e−j2βz=Zl+Z0Zl−Z0e−j2βz=∣Γl∣ejϕe−j2βz(27) 在
z
=
0
z=0
z=0处,
Γ
(
z
)
=
Γ
l
=
Z
l
−
Z
0
Z
l
+
Z
0
=
∣
Γ
l
∣
e
j
ϕ
\Gamma(z)=\Gamma_{l}= \frac{Z_{l}-Z_{0}}{Z_{l}+Z_{0}}=|\Gamma_{l}|e^{j\phi }
Γ(z)=Γl=Zl+Z0Zl−Z0=∣Γl∣ejϕ被称为负载反射系数
。他代表了负载对入射波的反射情况
,在幅度和相位上都做出了改变。
综上,任意一点的反射系数为:
Γ
(
z
)
=
Γ
l
e
−
j
2
β
z
(27)
\Gamma (z)=\Gamma_{l}e^{-j2\beta z}\tag{27}
Γ(z)=Γle−j2βz(27)
- 输入阻抗
Z
i
n
Z_{in}
Zin与反射系数
Γ
(
z
)
\Gamma (z)
Γ(z)的关系
根据反射系数的定义,在无耗传输线上,由式(13)
可得:
{ U ( z ) = A 1 e + j β z + A 2 e − j β z = A 1 e + j β z [ 1 + Γ ( z ) ] I ( z ) = 1 Z 0 ( A 1 e + j β z − A 2 e − j β z ) = 1 Z 0 A 1 e + j β z [ 1 − Γ ( z ) ] (28) \begin{cases} U(z)=A_{1}e^{+j\beta z}+A_{2}e^{-j\beta z}=A_{1}e^{+j\beta z}[1+\Gamma (z)] \\ I(z)=\frac{1}{Z_{0}} (A_{1}e^{+j\beta z}-A_{2}e^{-j\beta z})=\frac{1}{Z_{0}}A_{1}e^{+j\beta z}[1-\Gamma (z)] \end{cases}\tag{28} {U(z)=A1e+jβz+A2e−jβz=A1e+jβz[1+Γ(z)]I(z)=Z01(A1e+jβz−A2e−jβz)=Z01A1e+jβz[1−Γ(z)](28) 因此输入阻抗为
Z i n ( z ) = Z 0 1 + Γ ( z ) 1 − Γ ( z ) (29) Z_{in}(z)=Z_{0}\frac{1+\Gamma (z)}{1-\Gamma (z)}\tag{29} Zin(z)=Z01−Γ(z)1+Γ(z)(29) 化简得
Γ ( z ) = Z i n ( z ) − Z 0 Z i n ( z ) + Z 0 (30) \Gamma (z) =\frac{Z_{in}(z)-Z_{0}}{Z_{in}(z)+Z_{0}}\tag{30} Γ(z)=Zin(z)+Z0Zin(z)−Z0(30)
驻波比
驻波比
ρ
\rho
ρ定义为波传播路径上电压最大值与最小值之比
:
ρ
=
∣
U
∣
m
a
x
∣
U
∣
m
i
n
(31)
\rho =\frac{|U|_{max}}{|U|_{min}} \tag{31}
ρ=∣U∣min∣U∣max(31) 由式(28)
可得:
U
(
z
)
=
A
1
e
+
j
β
z
[
1
+
Γ
(
z
)
]
=
A
1
e
+
j
β
z
[
1
+
∣
Γ
l
∣
e
j
(
ϕ
−
2
β
z
)
]
(32)
U(z)=A_{1}e^{+j\beta z}[1+\Gamma (z)] =A_{1}e^{+j\beta z}[1+|\Gamma_{l}|e^{j(\phi-2\beta z)}]\tag{32}
U(z)=A1e+jβz[1+Γ(z)]=A1e+jβz[1+∣Γl∣ej(ϕ−2βz)](32) 所以
{
∣
U
∣
m
a
x
=
∣
A
1
∣
[
1
+
∣
Γ
l
∣
]
∣
U
∣
m
i
n
=
∣
A
1
∣
[
1
−
∣
Γ
l
∣
]
(33)
\begin{cases} |U|_{max}=|A_{1}|[1+|\Gamma_{l}|] \\ |U|_{min}=|A_{1}|[1-|\Gamma_{l}|] \end{cases}\tag{33}
{∣U∣max=∣A1∣[1+∣Γl∣]∣U∣min=∣A1∣[1−∣Γl∣](33) 所以驻波比
ρ
=
1
+
∣
Γ
l
∣
1
−
∣
Γ
l
∣
(34)
\rho =\frac{1+|\Gamma_{l}|}{1-|\Gamma_{l}|}\tag{34}
ρ=1−∣Γl∣1+∣Γl∣(34)
四、传输线状态分析
在式(14)
中我们求出了电压电流的瞬时分布,对于无耗传输线,式(14)
变为:
{
u
(
z
,
t
)
=
∣
A
1
∣
c
o
s
(
ω
t
+
β
z
+
θ
1
)
+
∣
A
2
∣
c
o
s
(
ω
t
−
β
z
+
θ
2
)
i
(
z
,
t
)
=
1
Z
0
[
∣
A
1
∣
c
o
s
(
ω
t
+
β
z
+
θ
1
)
+
∣
A
2
∣
c
o
s
(
ω
t
−
β
z
+
θ
2
)
]
(35)
\begin{cases} u(z,t)=\left | A_{1}\right |cos(\omega t+\beta z+\theta _{1})+\left | A_{2}\right |cos(\omega t-\beta z+\theta _{2}) \\ i(z,t)=\frac{1}{Z_{0}} \left [\left | A_{1}\right |cos(\omega t+\beta z+\theta _{1})+\left | A_{2}\right |cos(\omega t-\beta z+\theta _{2})\right ] \end{cases}\tag{35}
{u(z,t)=∣A1∣cos(ωt+βz+θ1)+∣A2∣cos(ωt−βz+θ2)i(z,t)=Z01[∣A1∣cos(ωt+βz+θ1)+∣A2∣cos(ωt−βz+θ2)](35) 那么不同的
A
1
,
A
2
A_{1} ,A_{2}
A1,A2会导致在传输线上产生不同的状态,主要有行波、驻波、行驻波
三种状态,接下来我们对其产生条件进行分析。
行波( ∣ A 2 ∣ = 0 |A_{2}|=0 ∣A2∣=0)
当
∣
A
2
∣
=
0
|A_{2}|=0
∣A2∣=0时,
U
(
z
)
=
U
+
(
z
)
U(z)=U_{+}(z)
U(z)=U+(z),即此时没有反射波,只有入射波,式(35)
变为
u
(
z
,
t
)
=
∣
A
1
∣
c
o
s
(
ω
t
+
β
z
+
θ
1
)
(36)
u(z,t)=\left | A_{1}\right |cos(\omega t+\beta z+\theta _{1})\tag{36}
u(z,t)=∣A1∣cos(ωt+βz+θ1)(36) 说明此时波只会向负载方向传播,不存在反射波。只有当传输线无限长
或负载匹配(在这负载匹配可以理解为负载将入射波全部吸收)
时会产生这种情况。
此时有:
{
Γ
l
=
A
2
A
1
=
0
Γ
(
z
)
=
Γ
l
e
−
j
2
β
z
=
0
Z
i
n
(
z
)
=
Z
0
1
+
Γ
(
z
)
1
−
Γ
(
z
)
=
Z
0
ρ
=
1
+
∣
Γ
l
∣
1
−
∣
Γ
l
∣
=
1
(37)
\begin{cases} \Gamma_{l}=\frac{A_{2}}{A_{1}}=0 \\ \Gamma (z)=\Gamma_{l}e^{-j2\beta z}=0 \\ Z_{in}(z)=Z_{0}\frac{1+\Gamma(z)}{1-\Gamma(z)}=Z_{0} \\ \rho=\frac{1+|\Gamma_{l}|}{1-|\Gamma_{l}|} =1 \end{cases}\tag{37}
⎩
⎨
⎧Γl=A1A2=0Γ(z)=Γle−j2βz=0Zin(z)=Z01−Γ(z)1+Γ(z)=Z0ρ=1−∣Γl∣1+∣Γl∣=1(37)
驻波( ∣ A 1 ∣ = ∣ A 2 ∣ |A_{1}|=|A_{2}| ∣A1∣=∣A2∣)
当
∣
A
1
∣
=
∣
A
2
∣
|A_{1}|=|A_{2}|
∣A1∣=∣A2∣时,式(35)
变为:
u
(
z
,
t
)
=
2
∣
A
1
∣
c
o
s
(
ω
t
+
θ
1
+
θ
2
2
)
c
o
s
(
β
z
+
θ
1
−
θ
2
2
)
(38)
u(z,t)=2\left | A_{1}\right |cos(\omega t+\frac{\theta _{1}+\theta _{2}}{2} )cos(\beta z+\frac{\theta _{1}-\theta _{2}}{2})\tag{38}
u(z,t)=2∣A1∣cos(ωt+2θ1+θ2)cos(βz+2θ1−θ2)(38) 此时信号的驻点位置被确定,即驻点不会随着信号的传播进行移动,波停滞不前。
由式(15)
可得:
{
A
1
=
1
2
(
U
l
+
I
l
Z
0
)
A
2
=
1
2
(
U
l
−
I
l
Z
0
)
\begin{cases} A_{1}=\frac{1}{2}(U_{l}+I_{l}Z_{0}) \\ A_{2}=\frac{1}{2}(U_{l}-I_{l}Z_{0}) \end{cases}
{A1=21(Ul+IlZ0)A2=21(Ul−IlZ0) 如果要出现驻波,那么
∣
A
1
∣
=
∣
A
2
∣
|A_{1}|=|A_{2}|
∣A1∣=∣A2∣,就有以下几种可能。
- 短路(
U
l
=
0
U_{l}=0
Ul=0)
当 U l = 0 U_{l}=0 Ul=0时, A 1 = − A 2 A_{1}=-A_{2} A1=−A2,根据反射系数的定义有
Γ l = A 2 A 1 = − 1 , Γ ( z ) = Γ l e − j 2 β z = − e − j 2 β z (39) \Gamma_{l}=\frac{A_{2}}{A_{1}}=-1,\Gamma(z)=\Gamma_{l}e^{-j2\beta z}=-e^{-j2\beta z}\tag{39} Γl=A1A2=−1,Γ(z)=Γle−j2βz=−e−j2βz(39) 由式(28)
可求得电压电流为
{ U ( z ) = A 1 e + j β z [ 1 + Γ ( z ) ] = j 2 A 1 s i n ( β z ) I ( z ) = 1 Z 0 A 1 e + j β z [ 1 − Γ ( z ) ] = 1 Z 0 2 A 1 c o s ( β z ) (40) \begin{cases} U(z)=A_{1}e^{+j\beta z}[1+\Gamma (z)] =j2A_{1}sin(\beta z)\\ I(z)=\frac{1}{Z_{0}}A_{1}e^{+j\beta z}[1-\Gamma (z)]=\frac{1}{Z_{0}}2A_{1}cos(\beta z) \end{cases}\tag{40} {U(z)=A1e+jβz[1+Γ(z)]=j2A1sin(βz)I(z)=Z01A1e+jβz[1−Γ(z)]=Z012A1cos(βz)(40) 可以发现电压的相位超前电流
90 ° 90\degree 90°,输入阻抗为:
Z i n ( z ) = U ( z ) I ( z ) = j Z 0 t a n β z (41) Z_{in}(z)=\frac{U(z)}{I(z)}=jZ_{0}tan{\beta z}\tag{41} Zin(z)=I(z)U(z)=jZ0tanβz(41) 输入阻抗在感性与容性之间相互变换,一个周期为 λ 2 \frac{\lambda}{2} 2λ。 - 开路(
I
l
=
0
I_{l}=0
Il=0)
当 I l = 0 I_{l}=0 Il=0时, A 1 = A 2 A_{1}=A_{2} A1=A2,根据反射系数的定义有:
Γ l = A 2 A 1 = 1 , Γ ( z ) = Γ l e − j 2 β z = e − j 2 β z (42) \Gamma_{l}=\frac{A_{2}}{A_{1}}=1,\Gamma(z)=\Gamma_{l}e^{-j2\beta z}=e^{-j2\beta z}\tag{42} Γl=A1A2=1,Γ(z)=Γle−j2βz=e−j2βz(42) 由式(28)
可求得电压电流为
{ U ( z ) = A 1 e + j β z [ 1 + Γ ( z ) ] = 2 A 1 c o s ( β z ) I ( z ) = 1 Z 0 A 1 e + j β z [ 1 − Γ ( z ) ] = j 1 Z 0 2 A 1 s i n ( β z ) (43) \begin{cases} U(z)=A_{1}e^{+j\beta z}[1+\Gamma (z)] =2A_{1}cos(\beta z)\\ I(z)=\frac{1}{Z_{0}}A_{1}e^{+j\beta z}[1-\Gamma (z)]=j\frac{1}{Z_{0}}2A_{1}sin(\beta z) \end{cases}\tag{43} {U(z)=A1e+jβz[1+Γ(z)]=2A1cos(βz)I(z)=Z01A1e+jβz[1−Γ(z)]=jZ012A1sin(βz)(43) 可以发现电流的相位超前电压
90 ° 90\degree 90°,输入阻抗为:
Z i n ( z ) = U ( z ) I ( z ) = − j Z 0 c o t β z (44) Z_{in}(z)=\frac{U(z)}{I(z)}=-jZ_{0}cot{\beta z}\tag{44} Zin(z)=I(z)U(z)=−jZ0cotβz(44) - 纯电抗(
Z
l
=
±
j
X
l
Z_{l}=\pm jX_{l}
Zl=±jXl)
此时 U l = ± j X l I l U_{l}=\pm jX_{l}I_{l} Ul=±jXlIl, A 1 = A 2 A_{1}=A_{2} A1=A2。
当 Z l = j X l Z_{l}= jX_{l} Zl=jXl时,负载为感性负载,可以用一段小于 λ 4 \frac{\lambda}{4} 4λ的短路线替代。
当 Z l = − j X l Z_{l}=- jX_{l} Zl=−jXl时,负载为容性负载,可以用一段大于 λ 4 \frac{\lambda}{4} 4λ小于 λ 2 \frac{\lambda}{2} 2λ的短路线替代。
行驻波 ( ∣ A 2 ∣ = ∣ Γ ∣ ∣ A 1 ∣ ; ∣ Γ ∣ ≤ 1 ) (|A_2|=\left|\Gamma\right||A_1|;\left|\Gamma\right|\le1) (∣A2∣=∣Γ∣∣A1∣;∣Γ∣≤1)
当
∣
A
2
∣
=
∣
Γ
∣
∣
A
1
∣
|A_2|=\left|\Gamma\right||A_1|
∣A2∣=∣Γ∣∣A1∣时,电压分布为:
u
(
z
,
t
)
=
2
∣
Γ
∥
A
1
∣
cos
(
β
z
+
θ
1
−
θ
2
2
)
cos
(
ω
t
+
θ
1
+
θ
2
2
)
+
(
1
−
∣
Γ
∣
)
∣
A
1
∣
cos
(
ω
t
+
β
z
+
θ
1
)
(45)
u(z,t)=2\mid\Gamma\parallel A_1\mid\cos(\beta z+\frac{\theta_1-\theta_2}{2})\cos(\omega t+\frac{\theta_1+\theta_2}{2})+(1-\vert\Gamma\vert)\vert A_1\vert\cos(\omega t+\beta z+\theta_1)\tag{45}
u(z,t)=2∣Γ∥A1∣cos(βz+2θ1−θ2)cos(ωt+2θ1+θ2)+(1−∣Γ∣)∣A1∣cos(ωt+βz+θ1)(45) 从中可以发现既有行波也有驻波
,所以称为行驻波。行驻波范围最广,是最常见的信号形式。此时
{
U
(
z
)
=
A
1
e
+
j
β
z
[
1
+
∣
Γ
l
∣
e
j
(
ϕ
−
2
β
z
)
]
I
(
z
)
=
1
Z
0
A
1
e
+
j
β
z
[
1
−
∣
Γ
l
∣
e
j
(
ϕ
−
2
β
z
)
]
(46)
\begin{cases} U(z)=A_{1}e^{+j\beta z}[1+|\Gamma_{l}|e^{j(\phi -2\beta z)}] \\ I(z)=\frac{1}{Z_{0}}A_{1}e^{+j\beta z}[1-|\Gamma_{l}|e^{j(\phi -2\beta z)}] \end{cases}\tag{46}
{U(z)=A1e+jβz[1+∣Γl∣ej(ϕ−2βz)]I(z)=Z01A1e+jβz[1−∣Γl∣ej(ϕ−2βz)](46)
- 当
c
o
s
(
ϕ
−
2
β
z
)
=
1
cos(\phi-2\beta z)=1
cos(ϕ−2βz)=1时,
∣
U
(
z
m
a
x
)
∣
=
∣
U
(
z
m
a
x
)
∣
m
a
x
|U(z_{max})|=|U(z_{max})|_{max}
∣U(zmax)∣=∣U(zmax)∣max,
∣
I
(
z
m
a
x
)
∣
=
∣
I
(
z
m
a
x
)
∣
m
i
n
|I(z_{max})|=|I(z_{max})|_{min}
∣I(zmax)∣=∣I(zmax)∣min,此时该点为电压波腹点,电流波节点。
此时有:
z m a x = λ 4 π ϕ + n λ 2 , n = 0 , 1.... (47) z_{max}=\frac{\lambda}{4\pi}\phi+\frac{n\lambda}{2} ,n=0,1....\tag{47} zmax=4πλϕ+2nλ,n=0,1....(47)并且
{ ∣ U ( z m a x ) ∣ m a x = ∣ A 1 ∣ [ 1 + ∣ Γ l ∣ ] ∣ I ( z m a x ) ∣ m i n = 1 Z 0 ∣ A 1 ∣ [ 1 − ∣ Γ l ∣ ] (48) \begin{cases} |U(z_{max})|_{max}=|A_{1}|[1+|\Gamma_{l}|] \\ |I(z_{max})|_{min}=\frac{1}{Z_{0}}|A_{1}|[1-|\Gamma_{l}|] \end{cases}\tag{48} {∣U(zmax)∣max=∣A1∣[1+∣Γl∣]∣I(zmax)∣min=Z01∣A1∣[1−∣Γl∣](48)所以 R m a x = ∣ U ( z m a x ) ∣ m a x ∣ I ( z m a x ) ∣ m i n = Z 0 ρ (49) R_{max}=\frac{|U(z_{max})|_{max}}{|I(z_{max})|_{min}}=Z_{0}\rho \tag{49} Rmax=∣I(zmax)∣min∣U(zmax)∣max=Z0ρ(49)此时说明了在距离负载
z m a x z_{max} zmax处为电压波腹点和电流波节点,并且具有最大的阻值。
- 当
c
o
s
(
ϕ
−
2
β
z
)
=
−
1
cos(\phi-2\beta z)=-1
cos(ϕ−2βz)=−1时,
∣
U
(
z
m
i
n
)
∣
=
∣
U
(
z
m
i
n
)
∣
m
i
n
|U(z_{min})|=|U(z_{min})|_{min}
∣U(zmin)∣=∣U(zmin)∣min,
∣
I
(
z
m
i
n
)
∣
=
∣
I
(
z
m
i
n
)
∣
m
a
x
|I(z_{min})|=|I(z_{min})|_{max}
∣I(zmin)∣=∣I(zmin)∣max,此时该点为电压波节点,电流波腹点。
此时有:
z m i n = λ 4 π ϕ + ( 2 n − 1 ) λ 4 , n = 0 , 1.... (50) z_{min}=\frac{\lambda}{4\pi}\phi+\frac{(2n-1)\lambda}{4} ,n=0,1....\tag{50} zmin=4πλϕ+4(2n−1)λ,n=0,1....(50)并且
{ ∣ U ( z m i n ) ∣ m i n = ∣ A 1 ∣ [ 1 − ∣ Γ l ∣ ] ∣ I ( z m i n ) ∣ m a x = 1 Z 0 ∣ A 1 ∣ [ 1 + ∣ Γ l ∣ ] (51) \begin{cases} |U(z_{min})|_{min}=|A_{1}|[1-|\Gamma_{l}|] \\ |I(z_{min})|_{max}=\frac{1}{Z_{0}}|A_{1}|[1+|\Gamma_{l}|] \end{cases}\tag{51} {∣U(zmin)∣min=∣A1∣[1−∣Γl∣]∣I(zmin)∣max=Z01∣A1∣[1+∣Γl∣](51)所以 R m i n = ∣ U ( z m i n ) ∣ m i n ∣ I ( z m i n ) ∣ m a x = Z 0 ρ (52) R_{min}=\frac{|U(z_{min})|_{min}}{|I(z_{min})|_{max}}=\frac{Z_{0}}{\rho} \tag{52} Rmin=∣I(zmin)∣max∣U(zmin)∣min=ρZ0(52)此时说明了在距离负载
z m i n z_{min} zmin处为电压波节点和电流波腹点,并且具有最小的阻值。
五、传输线的功率、损耗
在这一节中,我们将探讨传输线的功率问题,我们假设传输线均匀,且
γ
=
α
+
j
β
\gamma=\alpha+j\beta
γ=α+jβ,即考虑传输线损耗。此时电压电流的分布为:
{
U
(
z
)
=
U
+
(
z
)
+
U
−
(
z
)
=
A
1
e
α
z
e
j
β
z
+
A
2
e
−
α
z
e
−
j
β
z
I
(
z
)
=
I
+
(
z
)
+
I
−
(
z
)
=
1
Z
0
(
A
1
e
α
z
e
j
β
z
−
A
2
e
−
α
z
e
−
j
β
z
)
(53)
\begin{cases} U(z)=U_{+}(z)+U_{-}(z)=A_{1}e^{\alpha z}e^{j\beta z}+A_{2}e^{-\alpha z}e^{-j\beta z} \\ I(z)=I_{+}(z)+I_{-}(z)=\frac{1}{Z_{0}} (A_{1}e^{\alpha z}e^{j\beta z}-A_{2}e^{-\alpha z}e^{-j\beta z}) \end{cases}\tag{53}
{U(z)=U+(z)+U−(z)=A1eαzejβz+A2e−αze−jβzI(z)=I+(z)+I−(z)=Z01(A1eαzejβz−A2e−αze−jβz)(53)
输入功率
P i n ( z ) = 1 2 R e [ U + ( z ) I + ∗ ( z ) ] = ∣ A 1 ∣ 2 Z 0 e 2 α z (54) P_{in}(z)=\frac{1}{2}Re[U_{+}(z)I^{\ast }_{+}(z) ]=\frac{|A_{1}|^{2}}{Z_{0}}e^{2\alpha z}\tag{54} Pin(z)=21Re[U+(z)I+∗(z)]=Z0∣A1∣2e2αz(54)
反射功率
P r ( z ) = 1 2 R e [ U − ( z ) I − ∗ ( z ) ] = ∣ A 2 ∣ 2 Z 0 e − 2 α z (55) P_{r}(z)=\frac{1}{2}Re[U_{-}(z)I^{\ast }_{-}(z) ]=\frac{|A_{2}|^{2}}{Z_{0}}e^{-2\alpha z}\tag{55} Pr(z)=21Re[U−(z)I−∗(z)]=Z0∣A2∣2e−2αz(55)
传输功率
P t ( z ) = P i n ( z ) − P r ( z ) = ∣ A 1 ∣ 2 Z 0 e 2 α z ( 1 − ∣ Γ l ∣ 2 e − 4 α z ) (56) P_{t}(z)=P_{in}(z)-P_{r}(z)=\frac{|A_{1}|^{2}}{Z_{0}}e^{2\alpha z}(1-|\Gamma_{l}|^2e^{-4\alpha z})\tag{56} Pt(z)=Pin(z)−Pr(z)=Z0∣A1∣2e2αz(1−∣Γl∣2e−4αz)(56)
回波损耗
L
r
=
10
l
o
g
P
i
n
(
z
)
P
r
(
z
)
=
10
l
o
g
e
4
α
z
∣
Γ
l
∣
2
=
−
20
l
o
g
∣
Γ
l
∣
+
4
α
z
×
10
l
o
g
(
e
)
(57)
L_{r}=10log\frac{P_{in}(z)}{P_{r}(z)}=10log\frac{e^{4\alpha z}}{|\Gamma_{l}|^2}=-20log|\Gamma_{l}|+4\alpha z\times10log (e)\tag{57}
Lr=10logPr(z)Pin(z)=10log∣Γl∣2e4αz=−20log∣Γl∣+4αz×10log(e)(57) 特殊的对于无耗传输线有:
L
r
=
10
l
o
g
P
i
n
(
z
)
P
r
(
z
)
=
−
20
l
o
g
∣
Γ
l
∣
(58)
L_{r}=10log\frac{P_{in}(z)}{P_{r}(z)}=-20log|\Gamma_{l}|\tag{58}
Lr=10logPr(z)Pin(z)=−20log∣Γl∣(58)
插入损耗
L i = 10 l o g P i n ( z ) P t ( z ) = 10 l o g 1 1 − ∣ Γ l ∣ 2 e − 4 α z (59) L_{i}=10log\frac{P_{in}(z)}{P_{t}(z)}=10log\frac{1}{1-|\Gamma_{l}|^2e^{-4\alpha z}}\tag{59} Li=10logPt(z)Pin(z)=10log1−∣Γl∣2e−4αz1(59)
六、传输线阻抗匹配
对一个传输系统, 希望信号源在输出最大功率的同时,负载全部吸收,以实现高效稳定的传输。
- 一方面应用阻抗匹配器
使信源输出端达到匹配
,并且可以实现最大的输出。 - 另一方面应用阻抗匹配器
使负载与传输线特性阻抗相匹配
。
在传输线上的传输功率
P
t
(
z
)
=
1
2
R
e
[
U
(
z
)
I
∗
(
z
)
]
=
1
2
R
e
(
[
Z
i
n
Z
i
n
+
Z
g
E
g
]
[
E
g
Z
i
n
+
Z
g
]
∗
)
P_{t}(z)=\frac{1}{2}Re[U(z)I^{\ast }(z)]=\frac{1}{2}Re({[\frac{Z_{in}}{Z_{in}+Z_{g}}E_{g}][\frac{E_{g}}{Z_{in}+Z_{g}}]^{\ast }})
Pt(z)=21Re[U(z)I∗(z)]=21Re([Zin+ZgZinEg][Zin+ZgEg]∗)
P
t
(
z
)
=
1
2
∣
E
g
∣
2
R
i
n
(
R
i
n
+
R
g
)
2
+
(
X
i
n
+
X
g
)
2
(60)
P_{t}(z)=\frac{1}{2}|E_{g}|^2\frac{R_{in}}{(R_{in}+R_{g})^2+(X_{in}+X_{g})^2}\tag{60}
Pt(z)=21∣Eg∣2(Rin+Rg)2+(Xin+Xg)2Rin(60) 阻抗匹配就是为了是传输功率能达到最大。
负载阻抗匹配
当
Z
l
=
Z
0
Z_{l}=Z_{0}
Zl=Z0时,负载匹配,此时
R
i
n
=
Z
0
,
X
i
n
=
0
R_{in}=Z_{0},X_{in}=0
Rin=Z0,Xin=0,传输功率
P
t
(
z
)
=
1
2
∣
E
g
∣
2
Z
0
(
Z
0
+
R
g
)
2
+
X
g
2
(61)
P_{t}(z)=\frac{1}{2}|E_{g}|^2\frac{Z_{0}}{(Z_{0}+R_{g})^2+X_{g}^2}\tag{61}
Pt(z)=21∣Eg∣2(Z0+Rg)2+Xg2Z0(61) 此时负载吸收全部的入射波,不产生反射。
源阻抗匹配
当
Z
g
=
Z
0
Z_{g}=Z_{0}
Zg=Z0时,负载匹配,此时
R
g
=
Z
0
,
X
g
=
0
R_{g}=Z_{0},X_{g}=0
Rg=Z0,Xg=0,传输功率
P
t
(
z
)
=
1
2
∣
E
g
∣
2
R
i
n
(
R
i
n
+
Z
0
)
2
+
X
i
n
2
(62)
P_{t}(z)=\frac{1}{2}|E_{g}|^2\frac{R_{in}}{(R_{in}+Z_{0})^2+X_{in}^2}\tag{62}
Pt(z)=21∣Eg∣2(Rin+Z0)2+Xin2Rin(62) 此时源吸收负载的反射波,并在源处不产生反射。
源共轭阻抗匹配
为实现传输功率最大,应该满足
{
∂
P
t
(
z
)
∂
R
i
n
=
0
∂
P
t
(
z
)
∂
X
i
n
=
0
(63)
\begin{cases} \frac{\partial P_{t}(z)}{\partial R_{in}} =0 \\ \frac{\partial P_{t}(z)}{\partial X_{in}} =0 \end{cases}\tag{63}
{∂Rin∂Pt(z)=0∂Xin∂Pt(z)=0(63) 此时的解为:
{
R
i
n
=
R
g
X
i
n
=
−
X
g
\begin{cases} R_{in}=R_{g} \\ X_{in}=-X_{g} \end{cases}
{Rin=RgXin=−Xg 即当
Z
i
n
=
Z
g
∗
Z_{in}=Z_{g}^\ast
Zin=Zg∗时,实现源共轭阻抗匹配。
P
t
(
z
)
=
1
8
∣
E
g
∣
2
R
i
n
(64)
P_{t}(z)=\frac{1}{8}\frac{|E_{g}|^2}{R_{in}}\tag{64}
Pt(z)=81Rin∣Eg∣2(64)
λ 4 \frac{\lambda }{4} 4λ阻抗匹配器
在研究输入阻抗时,我们讨论过
λ
4
\frac{\lambda }{4}
4λ阻抗变换特性式(24)
,其意义表明了我们可以通过一段长度为
λ
4
\frac{\lambda }{4}
4λ的传输线将某一阻抗变换到另一阻抗。我们知道,负载阻抗匹配的条件是
Z
l
=
Z
0
Z_{l}=Z_{0}
Zl=Z0,那么假设现在负载为一个实阻抗
Z
l
′
≠
Z
0
Z_{l}'\ne Z_{0}
Zl′=Z0,为了实现匹配,我们加入一段长度为
λ
4
\frac{\lambda }{4}
4λ、特性阻抗为
Z
01
Z_{01}
Z01的传输线,那么此时从
z
=
λ
4
z=\frac{\lambda}{4}
z=4λ处看进去的输入阻抗为:
Z
i
n
(
λ
4
)
=
Z
01
2
Z
l
′
(65)
Z_{in}(\frac{\lambda}{4})=\frac{Z_{01}^2}{Z_{l}'}\tag{65}
Zin(4λ)=Zl′Z012(65) 那么如果此时有
Z
01
2
Z
l
′
=
Z
0
⇒
Z
01
=
Z
0
Z
l
′
(66)
\frac{Z_{01}^2}{Z_{l}'}=Z_{0}\Rightarrow Z_{01}=\sqrt{Z_{0}Z_{l}'} \tag{66}
Zl′Z012=Z0⇒Z01=Z0Zl′(66) 那么在
z
=
λ
4
z=\frac{\lambda}{4}
z=4λ处的输入阻抗
Z
i
n
(
λ
4
)
=
Z
0
Z_{in}(\frac{\lambda}{4})=Z_{0}
Zin(4λ)=Z0,便满足了阻抗匹配的条件式(24)
。
那么对于复阻抗怎么用
λ
4
\frac{\lambda }{4}
4λ阻抗匹配器来实现匹配呢?由式(47)
或式(50)
我们知道在行驻波条件下,根据此时负载的感性或容性可以找到距离最近的电压波腹点或电压波节点
,我们已经推出在电压波腹点或电压波节点的阻抗都是实数
Z
0
ρ
Z_{0}\rho
Z0ρ或
Z
0
ρ
\frac{Z_{0}}{\rho}
ρZ0,那么我们就可以按照实阻抗
λ
4
\frac{\lambda}{4}
4λ匹配的手段进行匹配。
在这小节中我们探讨了用一段长度为四分之波长的传输线实现阻抗匹配,其主要思想就是通过这一段传输线将负载阻抗变为传输线的特性阻抗
,使其满足匹配条件。对于实阻抗直接加四分之波长的传输线即可,对于复数阻抗,可以先找到电压波节点或电压波腹点再进行四分之波长阻抗匹配。
串联支节调配器
λ 4 \frac{\lambda }{4} 4λ阻抗匹配器给出了在负载为实数情况下的匹配实现手段,复数实现手段较为复杂。于是我们可以采用串联支节调配的手段进行阻抗匹配,串联支节调配器如下图所示:
首先找到电压波腹点,距离负载
l
1
′
=
λ
4
π
ϕ
+
n
λ
2
,
n
=
0
,
1...
l_{1}'=\frac{\lambda}{4\pi}\phi+\frac{n\lambda}{2},n=0,1...
l1′=4πλϕ+2nλ,n=0,1...(式(47)
),此时输入阻抗
Z
l
1
′
=
Z
0
ρ
Z_{l_{1}'}=Z_{0}\rho
Zl1′=Z0ρ,此时在
l
1
′
′
l_{1}''
l1′′处的输入阻抗
Z
l
1
′
′
=
Z
0
Z
l
1
′
+
j
Z
0
t
a
n
(
β
l
1
′
′
)
Z
0
+
j
Z
l
1
′
′
t
a
n
(
β
l
1
′
′
)
=
R
+
j
X
1
Z_{l_{1}''}=Z_{0}\frac{Z_{l_{1}'}+jZ_{0}tan(\beta l_{1}'')}{Z_{0}+jZ_{l_{1}''}tan(\beta l_{1}'')}=R+jX_{1}
Zl1′′=Z0Z0+jZl1′′tan(βl1′′)Zl1′+jZ0tan(βl1′′)=R+jX1,此时在
l
1
=
l
1
′
+
l
1
′
′
l_{1}=l_{1}'+l_{1}''
l1=l1′+l1′′处插入串联支节,长度为
l
2
l_{2}
l2,由于串联支节终端短路,由式(41)
可得,串联支节的输入阻抗为:
Z
l
2
=
j
Z
0
t
a
n
β
l
2
(67)
Z_{l_{2}}=jZ_{0}tan{\beta l_{2}}\tag{67}
Zl2=jZ0tanβl2(67) 那么此时从
l
1
l_{1}
l1处看进去的总阻抗为:
Z
=
Z
l
1
′
+
Z
l
2
=
R
+
j
(
X
1
+
Z
0
t
a
n
β
l
2
)
(68)
Z=Z_{l_{1}'}+Z_{l_{2}}=R+j(X_{1}+Z_{0}tan{\beta l_{2}})\tag{68}
Z=Zl1′+Zl2=R+j(X1+Z0tanβl2)(68) 要满足阻抗匹配需要使
Z
=
Z
0
Z=Z_{0}
Z=Z0,即:
{
R
=
Z
0
X
1
+
Z
0
t
a
n
(
β
l
2
)
=
0
(69)
\begin{cases} R=Z_{0}\\ X_{1}+Z_{0}tan(\beta l_{2})=0 \end{cases}\tag{69}
{R=Z0X1+Z0tan(βl2)=0(69)