【好文推荐理由】最近阅读的这篇论文全面探讨了大型语言模型(LLM)供应链的风险及其缓解措施,为大模型领域的研究提供了一个新颖的视角。文章不仅详细描述了LLM供应链的组成部分、利益相关者以及供应链中的风险类型,还提供了具体的风险缓解策略。我想,这些内容对于理解和保障LLM在实际应用中的安全性和可靠性至关重要。
研究背景与相关工作
研究背景
大型语言模型(LLM)作为人工智能领域的热门技术,其背后的供应链日益受到关注。LLM的集成并非简单的模型应用,而是涉及数据预处理、后处理、集成、插件交互等多个环节,形成了一个复杂的供应链系统。然而,这个供应链系统潜藏着多种风险,如安全风险、隐私风险、交付风险和法律风险等,这些风险可能对LLM在实际应用中的安全性和可靠性造成严重影响。因此,对LLM供应链的风险进行全面剖析,并提出相应的缓解措施,具有重要的理论和实际意义。
相关工作
供应链风险与防御技术
在供应链安全研究领域,Ladisa等人(2022)开发了一个关于软件供应链中攻击和防御技术的分类法,但这一分类法并未涵盖LLM特有的组件,如预训练LLM、提示和数据等,因此其应用价值在LLM供应链中受限。此外,一些研究虽然讨论了LLM面临的安全和隐私挑战,并提出了相应的防御和缓解策略,但通常没有深入探讨哪些利益相关者和组件受到影响,从而限制了为相关利益相关者提供可操作见解的能力。Wang等人(2023)则是最早概述LLM供应链研究议程的研究者之一,他们强调了LLM供应链中的关键组件,并通过MLOps和DevOps之间的交互进行了说明