AI大模型应用开发中关键术语的详细解释,涵盖基础概念、技术方法及应用模式

以下是AI大模型应用开发中关键术语的详细解释,涵盖基础概念、技术方法及应用模式:

图片来源:https://mp.weixin.qq.com/s/OGaz–rDoqRBy4HrTn97yg
在这里插入图片描述
图片来源

基础概念

  1. AI大模型(Large AI Model)

    • 定义:参数规模超大的人工智能模型,如语言模型(LLM)、视觉模型(如CLIP)、多模态模型等。
    • 特点:通过海量数据训练获得广泛能力,支持文本生成、图像理解、跨模态推理等任务。
  2. LLM(Large Language Model)

    • 定义:专注于语言处理的超大规模模型(如通义千问、GPT、BERT)。
    • 核心能力:文本生成、翻译、问答、逻辑推理、代码理解等。
  3. Tokenization(分词)

    • 定义:将文本拆分为模型可处理的最小单元(如单词、子词)。
    • 作用:标准化输入输出格式,常见工具如WordPiece、BytePair Encoding(BPE)。
    • 示例:将“hello”拆分为["hello"],或“university”拆分为["un", "##iver", "##sity"]

Prompt与Prompt Engineering

  1. Prompt

    • 定义:用户输入的指令或问题,用于引导模型生成期望输出。
    • 作用:通过指令、示例、格式约束等控制模型行为。
    • 示例
      "请用三个要点解释量子计算,并标注每个要点的关键词。"
  2. Prompt Engineering(Prompt工程)

    • 定义:设计高质量Prompt的技术,提升模型输出的准确性与可控性。
    • 方法
      • 指令明确化:如“请以法律术语解释合同条款”。
      • 示例添加:通过输入输出示例引导模型格式。
      • 格式约束:要求输出为JSON、Markdown等结构化格式。
  3. Few-shot/Zero-shot Learning

    • Few-shot Learning:通过少量示例(如3-5个)指导模型完成任务。
    • Zero-shot Learning:无需示例,直接通过指令生成输出。
    • 应用场景:快速适配新任务或数据稀缺场景。

模型训练与优化

  1. Fine-tuning(微调)

    • 定义:在预训练模型基础上,使用领域特定数据进一步训练以适配下游任务。
    • 方法
      • 全参数微调:更新所有模型参数(计算成本高)。
      • LoRA/LoFT:仅调整少量适配层参数(节省资源)。
    • 适用场景:医疗、金融等垂直领域定制化。
  2. Model Distillation(模型蒸馏)

    • 定义:将大模型的知识转移至小模型(Student Model),平衡性能与效率。
    • 流程
      1. 使用大模型(Teacher)生成输出作为“软标签”。
      2. 小模型通过这些标签学习,缩小性能差距。
  3. RLHF(Reinforcement Learning from Human Feedback)

    • 定义:通过人类反馈强化学习,优化模型生成结果的对齐性(如价值观、安全性)。
    • 流程
      1. 初版模型生成多个候选输出。
      2. 人类标注员对输出排序。
      3. 模型通过强化学习最大化高分输出概率。

推理与生成技术

  1. Inference(推理)

    • 定义:模型生成输出的过程,涉及参数配置(如温度、Top-k采样)。
    • 关键参数
      • Temperature:控制输出的随机性(高值更随机,低值更确定)。
      • Top-k Sampling:仅从概率最高的k个词中选择下一步生成。
  2. RAG(Retrieval-Augmented Generation)

    • 定义:结合检索(如向量数据库)与生成,增强模型事实准确性。
    • 流程
      1. 用户提问 → 检索相关文档片段。
      2. 模型生成回答时参考检索结果。
    • 优势:解决“幻觉”问题,支持实时数据更新。
  3. ReAct(Reasoning + Action)框架

    • 定义:模型通过推理(Reasoning)规划步骤,调用工具(Action)执行任务。
    • 流程
      1. 推理:分析问题,生成可能步骤(如“先查天气,再规划路线”)。
      2. 行动:调用天气API或地图工具获取数据。
      3. 迭代:根据结果调整策略,直至任务完成。

模型与工具协同

  1. Agent(智能体)

    • 定义:具备自主决策能力的程序,可执行多步骤复杂任务。
    • 功能
      • 规划任务流程(如分阶段查询、调用工具)。
      • 处理异常(如工具调用失败时重试或切换方案)。
    • 示例:客服Agent自动处理用户投诉,需调用工单系统与知识库。
  2. Tools(工具)

    • 定义:模型外部的功能模块,扩展模型能力。
    • 类型
      • API接口:天气查询、翻译服务。
      • 数据库:结构化数据检索。
      • 本地脚本:文件处理、数学计算。
    • 集成方式:通过Agent或中间件调用。

模型评估与安全

  1. 评估指标

    • 文本生成:BLEU(翻译)、ROUGE(摘要)、BERTScore(语义相似度)。
    • 代码生成:通过编译成功率、功能正确性评估。
    • 对话系统:人工标注的流畅性、相关性评分。
  2. Prompt注入攻击

    • 定义:通过恶意Prompt操控模型输出,如诱导模型生成有害内容。
    • 防御
      • 过滤敏感指令。
      • RLHF训练强化价值观对齐。

部署与工程化

  1. MaaS(Model-as-a-Service)

    • 定义:以云端服务形式提供模型能力,如阿里云通义万相API。
    • 优势:开发者无需维护模型,按需调用。
  2. 模型压缩

    • 定义:通过量化、剪枝等技术减少模型体积,提升推理速度。
    • 方法
      • 量化:将浮点数参数转换为低精度(如8位整数)。
      • 知识蒸馏:压缩模型同时保留性能。

进阶技术

  1. MCP(Model Composition Protocol)

    • 定义:组合多个模型完成复杂任务,如“意图分类→检索→生成”流水线。
    • 示例
      意图分类模型 → 知识库检索模型 → 回答生成模型
  2. Chain of Thought(CoT)

    • 定义:模型逐步推理,生成中间步骤以辅助最终输出。
    • 示例
      用户问“计算5+3×2”,模型先写出“先乘后加:3×2=6 → 5+6=11”。

数据与训练

  1. Embeddings(嵌入)

    • 定义:将文本/图像映射为向量,用于相似性计算或检索。
    • 应用场景
      • 文本检索(如通过向量数据库查找相关文档)。
      • 图像相似度匹配。
  2. 对抗训练

    • 定义:通过对抗样本增强模型鲁棒性,防止攻击或噪声干扰。
    • 方法:在训练数据中加入轻微扰动,使模型更稳定。

总结

以上术语覆盖了AI大模型开发的全流程,从基础概念到工程实践。实际开发中需结合具体场景选择技术组合,例如:

  • 问答系统:RAG + Prompt Engineering + 评估指标。
  • 复杂任务处理:Agent + Tools + ReAct框架。
  • 安全可控性:RLHF + Prompt注入防御。

如需深入探讨某项技术或具体案例,可进一步交流!

参考

https://zhuanlan.zhihu.com/p/1893384805913171411

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱的叹息

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值