
python
文章平均质量分 86
爱的叹息
to be or not to be ,this is a question
展开
-
Python+LangChain+ollama+qwen:0.5b打造智能问答神器
本文介绍了一个基于Python+LangChain+Ollama(Qwen:0.5b模型)的通用问答系统开发方案。系统通过修改原有命名程序的三个核心模块:模型初始化模块、新增的问答处理模块和主函数交互模块,实现了支持中文的自然语言问答功能。文章提供了完整的代码实现(qa_system.py),包括模型加载、问答处理和命令行交互界面,并展示了实际问答示例。最后,作者提出了进阶优化建议,如多模型支持、日志记录、提示工程优化和Web接口开发,以及RAG集成、语音交互等未来扩展方向。该系统可作为本地化智能问答的基础原创 2025-05-30 16:29:18 · 444 阅读 · 0 评论 -
Python pip命令详解:从安装到卸载全掌握
本文详细介绍了Python包管理工具pip的常用命令及功能,包括安装(pip install)、卸载(pip uninstall)、查看已安装包(pip list)、显示包信息(pip show)等操作。特别说明了各命令的常用选项参数,如--upgrade升级包、--user用户安装等,并附有具体示例。最后总结了命令速查表,帮助开发者快速掌握pip的使用技巧,提升Python项目依赖管理的效率。原创 2025-05-30 14:35:42 · 905 阅读 · 0 评论 -
Python四大环境管理工具全解析
本文详细介绍了四种Python环境管理工具:Virtualenv、Conda、Pipenv和Poetry。Virtualenv轻量简单,适合小型项目;Conda功能强大,支持多语言包管理;Pipenv自动化程度高,注重依赖安全;Poetry集成了包管理和项目发布功能。通过对比表格展示了它们的环境管理、包管理、依赖锁定等核心特性差异,并给出适用场景建议。用户可根据项目需求选择合适工具,如小型项目用Virtualenv,科学计算选Conda,严格依赖管理用Pipenv,现代项目开发推荐Poetry。原创 2025-05-30 14:28:55 · 955 阅读 · 0 评论 -
30款Python开发神器,效率倍增
Python开发工具全指南:从编写到部署的高效选择 摘要:本文全面介绍了Python开发中的实用工具链,涵盖IDE(VS Code/PyCharm)、代码编辑器、虚拟环境管理(venv/conda)、包管理(pip/pipx)、代码质量检测(flake8/black)、测试框架(pytest)、文档生成(Sphinx)、性能分析(cProfile)、版本控制(Git)和自动化部署(Docker)等10大类工具。针对不同开发场景如数据分析、Web开发和小型脚本,文章推荐了针对性工具组合,帮助开发者根据项目需求原创 2025-05-30 14:15:25 · 701 阅读 · 0 评论 -
LangChain三大消息模式解析:AIMessage、HumanMessage 和 SystemMessage
LangChain 的 schema 定义了三种角色类型的数据模式:AIMessage、HumanMessage 和 SystemMessage,用于构建结构化的对话系统。AIMessage 代表 AI 生成的回复,HumanMessage 代表用户的输入,SystemMessage 则提供对话的上下文或规则。通过这三种消息类型,对话系统能够更智能地处理用户查询并生成合适的回复。例如,用户询问天气时,HumanMessage 表示用户问题,AIMessage 表示 AI 的回复,而 SystemMessag原创 2025-05-20 17:37:11 · 1146 阅读 · 0 评论 -
LangChain API密钥管理全攻略
LangChain 提供了多种灵活的 API 密钥管理策略,适用于不同规模和需求的项目。常见的策略包括通过环境变量、.env 文件、硬编码传参、自定义封装类以及集成企业级密钥管理工具(如 AWS Secrets Manager、HashiCorp Vault 等)。环境变量和 .env 文件适合开发和团队协作,而硬编码传参仅适用于快速测试。对于中大型项目,建议使用自定义封装类或集成企业级密钥管理工具,以提高安全性和可维护性。LangChain 不强制规定密钥管理方式,开发者可根据项目需求选择合适策略,确保系原创 2025-05-20 16:59:20 · 545 阅读 · 0 评论 -
向量存储系统:高维数据检索的未来
向量存储系统(Vector Store)是一种专门用于高效存储、索引和检索高维向量数据的系统,广泛应用于推荐系统、图像搜索、语义相似度匹配、RAG(Retrieval-Augmented Generation)等场景。其核心功能是将非结构化或半结构化数据(如文本、图片、音频)转换为嵌入向量后进行存储与快速检索。向量存储系统解决了海量数据检索慢、语义理解不足、动态更新困难、内存占用大等问题,包含编码器、向量索引构建、向量插入/更新、向量检索、持久化与恢复、分布式支持等功能模块。典型应用场景包括推荐系统、图像检原创 2025-05-20 16:33:20 · 377 阅读 · 0 评论 -
LangChain与LEDVR:构建智能问答系统
LangChain 是一个用于构建语言模型应用的框架,支持多种工作流模式,如 LEDVR(加载、提取、分割、向量化、检索)。结合 RAG(检索增强生成)技术,可以实现基于知识库的问答系统。本文通过一个完整的示例,展示了如何使用 LangChain 实现基于 LEDVR 的 RAG 功能,构建一个能够回答本地 PDF 文件内容的 AI 应用。示例代码详细演示了从加载 PDF 文件、提取和分割文本、向量化、检索到生成答案的完整流程。LangChain 的优势在于支持多种数据源、易于扩展和替换组件,适合构建复杂原创 2025-05-20 16:25:14 · 429 阅读 · 0 评论 -
Python 的 pip 命令详解,涵盖常用操作和高级用法
Python 的 pip 命令详解,涵盖常用操作和高级用法原创 2025-04-18 15:24:56 · 503 阅读 · 0 评论 -
关于Python学习路径、AI开发优缺点及注意事项的详细分点说明
关于Python学习路径、AI开发优缺点及注意事项的详细分点说明原创 2025-04-16 08:43:42 · 913 阅读 · 0 评论