AI 大模型的主流的大模型架构分类

AI 大模型的模型架构是决定其性能、训练效率和应用场景的关键因素。根据近年来的发展,主流的大模型架构主要包括以下几类:
在这里插入图片描述


🧠 一、主要 AI 大模型架构分类

架构类型典型代表核心特点
TransformerGPT、BERT、T5 等基于自注意力机制,适合处理序列数据
Encoder-DecoderT5、BART、Seq2Seq Transformer包含编码器和解码器结构,适用于翻译、摘要等任务
Causal Decoder-onlyGPT 系列、LLaMA、Falcon只使用解码器部分,用于生成式任务(如对话)
Prefix DecoderGLM、CPM 等支持前缀上下文控制生成,适合可控文本生成
MoE(Mixture of Experts)Mixtral、GLM-130B、DeepSeek-V3混合专家模型,提升参数规模的同时控制计算成本
Sparse MoESwitch Transformer、GShard在 MoE 基础上引入稀疏激活机制,提高效率
多模态架构CLIP、Flamingo、KOSMOS-1融合文本、图像等多种模态信息
RNN / LSTM 衍生结构ELMo、Transformer-XL早期或改进版的循环神经网络结构

🔍 二、各架构详解

1. Transformer

  • 核心思想:基于自注意力机制(Self-Attention),并采用位置编码解决顺序问题。
  • 适用场景
    • 文本理解与生成
    • 机器翻译、摘要生成等 NLP 任务
  • 优点
    • 并行化程度高,训练效率高
    • 能建模长距离依赖关系
  • 缺点
    • 计算复杂度较高(O(n²))
    • 对硬件资源要求高

2. Encoder-Decoder 架构

  • 结构组成
    • 编码器(Encoder):提取输入特征
    • 解码器(Decoder):生成目标输出
  • 典型应用
    • 序列到序列任务(如翻译、摘要)
  • 优点
    • 结构清晰,易于理解和实现
    • 可结合不同模块进行扩展
  • 缺点
    • 参数量大时训练成本高
    • 部分模型存在“左到右”依赖限制

3. Causal Decoder-only 架构

  • 结构特点
    • 仅使用 Transformer 的解码器部分
    • 使用因果掩码(Causal Mask)确保只能看到前面的 token
  • 典型模型
    • GPT 系列(GPT-2、GPT-3、GPT-4)、LLaMA、Falcon
  • 适用场景
    • 生成式任务(如对话、续写)
  • 优点
    • 更适合生成任务
    • 模型结构更简单
  • 缺点
    • 不擅长双向语义理解(如 BERT)

4. Prefix Decoder 架构

  • 结构特点
    • 输入分为两部分:前缀(prefix)和可学习的生成部分
    • 前缀控制生成内容的方向
  • 典型模型
    • GLM、CPM 等
  • 适用场景
    • 控制生成任务(如可控摘要、逻辑推理)
  • 优点
    • 可控性强
    • 支持灵活的上下文控制
  • 缺点
    • 实现复杂度略高
    • 训练数据构造较复杂

5. MoE(Mixture of Experts)架构

  • 结构特点
    • 将多个专家子模型组合在一起
    • 每个 token 只激活其中一部分专家
  • 典型模型
    • Mixtral、GLM-130B、DeepSeek-V3
  • 适用场景
    • 超大规模模型(千亿级以上)
  • 优点
    • 参数规模巨大但计算开销可控
    • 提升模型表达能力
  • 缺点
    • 实现复杂
    • 推理时可能有延迟波动

6. Sparse MoE

  • 结构特点
    • 在 MoE 基础上引入稀疏激活策略
    • 每个 token 只选择少量专家参与计算
  • 典型模型
    • Google Switch Transformer、GShard
  • 适用场景
    • 分布式训练和超大规模部署
  • 优点
    • 显著降低计算资源需求
    • 支持更大模型训练
  • 缺点
    • 容易出现负载不均衡问题
    • 实现难度更高

7. 多模态架构

  • 结构特点
    • 同时处理多种模态数据(如文本、图像、音频)
    • 通常包含跨模态注意力模块
  • 典型模型
    • CLIP、Flamingo、KOSMOS-1
  • 适用场景
    • 图像描述生成、图文检索、视频理解等
  • 优点
    • 支持跨模态理解与生成
    • 扩展性强
  • 缺点
    • 数据标注与预处理复杂
    • 训练成本高

8. RNN / LSTM 衍生结构

  • 结构特点
    • 基于循环神经网络(RNN)或长短时记忆网络(LSTM)
    • 后期融合注意力机制(如 Transformer-XL)
  • 典型模型
    • ELMo、Transformer-XL
  • 适用场景
    • 早期语言模型、小规模任务
  • 优点
    • 实现简单
    • 适合小规模任务
  • 缺点
    • 并行化差,训练慢
    • 难以建模长距离依赖

📊 三、总结对比表格

架构类型是否支持生成是否支持双向语义是否适合大规模是否适合多模态典型代表
Transformer✅ 是✅ 是✅ 是❌ 否BERT、T5
Encoder-Decoder✅ 是✅ 是✅ 是✅ 是(需扩展)T5、BART
Causal Decoder-only✅ 是❌ 否✅ 是❌ 否GPT 系列、LLaMA
Prefix Decoder✅ 是✅ 是✅ 是❌ 否GLM、CPM
MoE✅ 是✅ 是✅ 是(高效)❌ 否Mixtral、GLM-130B
Sparse MoE✅ 是✅ 是✅ 是(更高效)❌ 否Switch Transformer
多模态架构✅ 是✅ 是✅ 是✅ 是CLIP、Flamingo
RNN/LSTM 衍生✅ 是❌ 否❌ 否❌ 否ELMo、Transformer-XL

✅ 四、选择建议

  • 通用语言模型:首选 TransformerCausal Decoder-only(如 GPT 系列)。
  • 翻译/摘要任务:使用 Encoder-Decoder 架构(如 T5)。
  • 可控生成任务:考虑 Prefix Decoder(如 GLM)。
  • 超大规模模型:采用 MoESparse MoE 架构。
  • 多模态任务:使用专门设计的多模态架构(如 Flamingo、CLIP)。

如需进一步了解某类架构的具体实现细节(如 MoE 中的路由机制、Prefix Decoder 的训练方式等),欢迎继续提问。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

爱的叹息

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值