HDU 2067 小兔的棋盘 递推/dp

小兔的棋盘

Time Limit: 1000/1000 MS (Java/Others)    Memory Limit: 32768/32768 K (Java/Others)
Total Submission(s): 7868    Accepted Submission(s): 4184


Problem Description
小兔的叔叔从外面旅游回来给她带来了一个礼物,小兔高兴地跑回自己的房间,拆开一看是一个棋盘,小兔有所失望。不过没过几天发现了棋盘的好玩之处。从起点(0,0)走到终点(n,n)的最短路径数是C(2n,n),现在小兔又想如果不穿越对角线(但可接触对角线上的格点),这样的路径数有多少?小兔想了很长时间都没想出来,现在想请你帮助小兔解决这个问题,对于你来说应该不难吧!
 

Input
每次输入一个数n(1<=n<=35),当n等于-1时结束输入。
 

Output
对于每个输入数据输出路径数,具体格式看Sample。
 

Sample Input
  
  
1 3 12 -1
 

Sample Output
  
  
1 1 2 2 3 10 3 12 416024
 

Author
Rabbit
 

Source
 

Recommend

lcy   |   We have carefully selected several similar problems for you:  2064 2065 1133 2068 1267 

问有多少种走法,因为不能穿过对角线所以分为两部分右上三角形和右下三角形

推出知道一半的走法是卡特兰数,卡特兰递推公式 f[0]=1;for i:1 to 40 f[i]=f[i-1]*(4*i-2)/(i+1);

起先用longlong 挂了不知道为什么

后来直接大数模板走起

ACcode:

#include <map>
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define rd(x) scanf("%d",&x)
#define rd2(x,y) scanf("%d%d",&x,&y)
#define ll long long int
#define maxn 100005
#define mod 1000000007
#define INF 0x3f3f3f3f //int×î´óÖµ
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define MT(x,i) memset(x,i,sizeof(x))
#define PI  acos(-1.0)
#define E  exp(1)
#define MAXN 9999
#define MAXSIZE 1010
#define DLEN 4
using namespace std;
class BigNum{
private:
    int a[500];
    int len;
public:
    BigNum(){len=1;MT(a,0);}
    BigNum(const int);///int 转大数
    BigNum(const char*);///字符转大数
    BigNum(const BigNum&);///拷贝
    BigNum &operator=(const BigNum&);///重载赋值
    friend istream& operator>>(istream&,BigNum&);///重载输入
    friend ostream& operator<<(ostream&,BigNum&);///输出
    BigNum operator+(const BigNum&)const;
    BigNum operator-(const BigNum&)const;
    BigNum operator*(const BigNum&)const;
    BigNum operator/(const int &)const;
    BigNum operator^(const int &)const;///n次方
    int operator%(const int &)const;///大数对Int数取mod
    bool operator>(const BigNum &T)const;///比大小
    bool operator>(const int &t)const;
    void print();
};
BigNum ::BigNum(const int b){
    int c,d=b;
    len=0;
    MT(a,0);
    while(d>MAXN){
        c=d-((d/MAXN+1))*(MAXN+1);
        d=d/(MAXN+1);
        a[len++]=c;
    }
    a[len++]=d;
}
BigNum::BigNum(const char *s){
    int t,k,myindex,L,i;
    MT(a,0);
    L=strlen(s);
    len=L/DLEN;
    if(L%DLEN)len++;
    myindex=0;
    for(i=L-1;i>=0;i-=DLEN){
        t=0;
        k=i-DLEN+1;
        if(k<0)k=0;
        for(int j=k;j<=i;++j)
            t=t*10+s[j]-'0';
        a[myindex++]=t;
    }
}
BigNum::BigNum(const BigNum &T):len(T.len){
    MT(a,0);
    for(int i=0;i<len;i++)
        a[i]=T.a[i];
}
BigNum&BigNum::operator=(const BigNum &n){
    len=n.len;
    MT(a,0);
    for(int i=0;i<len;i++)
        a[i]=n.a[i];
    return *this;
}
istream& operator>>(istream &in,BigNum &b){
    char ch[MAXSIZE*4];
    int i=-1;
    in>>ch;
    int L=strlen(ch);
    int count=0,sum=0;
    for(i=L-1;i>=0;){
        sum=0;
        int t=1;
        for(int j=0;j<4&&i>=0;j++,i--,t*=10)
            sum+=(ch[i]-'0')*t;
        b.a[count]=sum;
        count++;
    }
    b.len=count++;
    return in;
}
ostream& operator<<(ostream& out,BigNum& b){
    int i;
    cout<<b.a[b.len-1];
    for(i=b.len-2;i>=0;i--)
        printf("%04d",b.a[i]);
    return out;
}
BigNum BigNum::operator+(const BigNum &T)const{
    BigNum t(*this);
    int i,big;
    big=T.len>len?T.len:len;
    for(i=0;i<big;++i){
        t.a[i]+=T.a[i];;
        if(t.a[i]>MAXN){
            t.a[i+1]++;
            t.a[i]-=MAXN+1;
        }
    }
    if(t.a[big]!=0)
        t.len=big+1;
    else t.len=big;
    return t;
}
BigNum BigNum::operator-(const BigNum &T)const{
    int j,big;
    bool flag;
    BigNum t1,t2;
    if(*this>T){
        t1=*this;
        t2=T;
        flag=0;
    }
    else {
        t1=T;
        t2=*this;
        flag=1;
    }
    big=t1.len;
    for(int i=0;i<big;i++){
        if(t1.a[i]<t2.a[i]){
            j=i+1;
            while(t1.a[j]==0)
                j++;
            t1.a[j--]--;
            while(j>i)
                t1.a[j--]+=MAXN;
            t1.a[i]+=MAXN+1-t2.a[i];
        }
        else t1.a[i]-=t2.a[i];
    }
    t1.len=big;
    while(t1.a[len-1]==0&&t1.len>1){
        t1.len--;
        big--;
    }
    if(flag)
        t1.a[big-1]=0-t1.a[big-1];
    return t1;
}
BigNum BigNum::operator*(const BigNum &T)const{
    BigNum ret;
    int i,j,up;
    int temp,temp1;
    for(i=0;i<len;i++){
        up=0;
        for(j=0;j<T.len;j++){
            temp=a[i]*T.a[j]+ret.a[i+j]+up;
            if(temp>MAXN){
                temp1=temp-temp/(MAXN+1)*(MAXN+1);
                up=temp/(MAXN+1);
                ret.a[i+j]=temp1;
            }
            else {
                up=0;
                ret.a[i+j]=temp;
            }
        }
        if(up!=0)
            ret.a[i+j]=up;
    }
    ret.len=i+j;
    while(ret.a[ret.len-1]==0&&ret.len>1)ret.len--;
    return ret;
}
BigNum BigNum::operator/(const int &b)const{
    BigNum ret;
    int i,down=0;
    for(i=len-1;i>=0;i--){
        ret.a[i]=(a[i]+down*(MAXN+1))/b;
        down=a[i]+down*(MAXN+1)-ret.a[i]*b;
    }
    ret.len=len;
    while(ret.a[ret.len-1]==0&&ret.len>1)
        ret.len--;
    return ret;
}
int BigNum::operator%(const int &b)const{
    int i,d=0;
    for(i=len-1;i>=0;i--)
        d=((d*(MAXN+1))%b+a[i])%b;
    return d;
}
BigNum BigNum::operator^(const int &n)const{
    BigNum t,ret(1);
    int i;
    if(n<0)exit(-1);
    if(n==0)return 1;
    if(n==1)return *this;
    int m=n;
    while(m>1){
        t=*this;
        for(i=1;(i<<1)<=m;i<<=1)
            t=t*t;
        m-=i;
        ret=ret*t;
        if(m==1)ret=ret*(*this);
    }
    return ret;
}
bool BigNum::operator>(const BigNum &T)const{
    int ln;
    if(len>T.len)return true;
    else if(len==T.len){
        ln=len-1;
        while(a[ln]==T.a[ln]&&ln>=0)
            ln--;
        if(ln>=0&&a[ln]>T.a[ln])
            return true;
        else
            return false;
    }
    else
        return false;
}
bool BigNum::operator>(const int &t)const{
    BigNum b(t);
    return *this>b;
}
void BigNum::print(){
    int i;
    printf("%d",a[len-1]);
    for(i=len-2;i>=0;i--)
        printf("%04d",a[i]);
    printf("\n");
}
BigNum my[110];
int main(){
    my[0]=1;
    for(int i=1;i<40;++i)
        my[i]=my[i-1]*(4*i-2)/(i+1);
    for(int i=1;i<40;++i)
        my[i]=my[i]*2;
    int n,cnt=1;
    while(rd(n)&&n!=-1){
        printf("%d %d ",cnt++,n);
       my[n].print();
    }
    return 0;
}

/*
1
3
12
-1
*/


  • 0
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
### 回答1: hdu 2829 Lawrence 斜率优化dp 这道题是一道经典的斜率优化dp题目,需要用到单调队列的思想。 题目大意是给定一个序列a,求出一个序列b,使得b[i]表示a[1]~a[i]中的最小值,且满足b[i] = min{b[j] + (i-j)*k},其中k为给定的常数。 我们可以将上式拆开,得到b[i] = min{b[j] - j*k} + i*k,即b[i] = i*k + min{b[j] - j*k},这个式子就是斜率优化dp的形式。 我们可以用单调队列来维护min{b[j] - j*k},具体思路如下: 1. 首先将第一个元素加入队列中。 2. 从第二个元素开始,我们需要将当前元素加入队列中,并且需要维护队列的单调性。 3. 维护单调性的方法是,我们从队列的末尾开始,将队列中所有大于当前元素的元素弹出,直到队列为空或者队列中最后一个元素小于当前元素为止。 4. 弹出元素的同时,我们需要计算它们对应的斜率,即(b[j]-j*k)/(j-i),并将这些斜率与当前元素的斜率比较,如果当前元素的斜率更小,则将当前元素加入队列中。 5. 最后队列中的第一个元素就是min{b[j] - j*k},我们将它加上i*k就得到了b[i]的值。 6. 重复以上步骤直到处理完所有元素。 具体实现可以参考下面的代码: ### 回答2: HDU 2829 Lawrence 斜率优化 DP 是一道经典的斜率优化 DP 题目,其思想是通过维护一个下凸包来优化 DP 算法。下面我们来具体分析一下这道题目。 首先,让我们看一下该题目的描述。题目给定一些木棒,要求我们将这些木棒割成一些给定长度,且要求每种长度的木棒的数量都是一样的,求最小的割枝次数。这是一个典型的背包问题,而且在此基础上还要求每种长度的木棒的数量相同,这就需要我们在状态设计上走一些弯路。 我们来看一下状态的定义。定义 $dp[i][j]$ 表示前 $i$ 个木棒中正好能割出 $j$ 根长度为 $c_i$ 的木棒的最小割枝次数。对于每个 $dp[i][j]$,我们可以分类讨论: 1. 不选当前的木棒,即 $dp[i][j]=dp[i-1][j]$; 2. 选当前的木棒,即 $dp[i][j-k]=dp[i-1][j-k]+k$,其中 $k$ 是 $j/c_i$ 的整数部分。 现在问题再次转化为我们需要在满足等量限制的情况下,求最小的割枝次数。可以看出,这是一个依赖于 $c_i$ 的限制。于是,我们可以通过斜率优化 DP 来解决这个问题。 我们来具体分析一下斜率优化 DP 算法的思路。我们首先来看一下动态规划的状态转移方程 $dp[i][j]=\min\{dp[i-1][k]+x_k(i,j)\}$。可以发现,$dp[i][j]$ 的最小值只与 $dp[i-1][k]$ 和 $x_k(i,j)$ 有关。其中,$x_k(i,j)$ 表示斜率,其值为 $dp[i-1][k]-k\times c_i+j\times c_i$。 接下来,我们需要维护一个下凸包,并通过斜率进行优化。我们具体分析一下该过程。假设我们当前要计算 $dp[i][j]$。首先,我们需要找到当前点 $(i,j)$ 在凸包上的位置,即斜率最小值的位置。然后,我们根据该位置的斜率计算 $dp[i][j]$ 的值。接下来,我们需要将当前点 $(i,j)$ 加入到下凸包上。 我们在加入点的时候需要注意几点。首先,我们需要将凸包中所有斜率比当前点小的点移除,直到该点能够加入到凸包中为止。其次,我们需要判断该点是否能够加入到凸包中。如果不能加入到凸包中,则直接舍弃。最后,我们需要保证凸包中斜率是单调递增的,这就需要在加入新的点之后进行上一步操作。 以上就是该题目的解题思路。需要注意的是,斜率优化 DP 算法并不是万能的,其使用情况需要根据具体的问题情况来确定。同时,该算法中需要维护一个下凸包,可能会增加一些算法的复杂度,建议和常规 DP 算法进行对比,选择最优的算法进行解题。 ### 回答3: 斜率优化DP是一种动态规划优化算法,其主要思路是通过对状态转移方程进行变形,提高算法的时间复杂度。HDU2829 Lawrence问题可以用斜率优化DP解决。 首先,我们需要了解原问题的含义。问题描述如下:有$n$个人在数轴上,第$i$个人的位置为$A_i$,每个人可以携带一定大小的行李,第$i$个人的行李重量为$B_i$,但是每个人只能帮助没有他们重量大的人搬行李。若第$i$个人搬运了第$j$个人的行李,那么第$i$个人会累加$C_{i,j}=\left|A_i-A_j\right|\cdot B_j$的体力消耗。求$m$个人帮助每个人搬运行李的最小体力消耗。 我们可以通过斜率优化DP解决这个问题。记$f_i$为到前$i$个人的最小体力消耗,那么状态转移方程为: $$f_i=\min_{j<i}\{f_j+abs(A_i-A_j)\cdot B_i\}$$ 如果直接使用该方程,时间复杂度为$O(n^2)$,如果$n=10^4$,则需要计算$10^8$次,运算时间极长。斜率优化DP通过一些数学推导将方程变形,将时间复杂度降低到$O(n)$,大大缩短了计算时间。 通过斜率优化DP的推导式子,我们可以得到转移方程为: $$f_i=\min_{j<i}\{f_j+slope(j,i)\}$$ 其中,$slope(j,i)$表示直线$j-i$的斜率。我们可以通过如下方式来求解$slope(j,i)$: $$slope(j,i)=\frac{f_i-f_j}{A_i-A_j}-B_i-B_j$$ 如果$slope(j,i)\leq slope(j,k)$,那么$j$一定不是最优,可以直接舍去,降低计算时间。该算法的时间复杂度为$O(n)$。 综上所述,斜率优化DP是一种动态规划优化算法,可以大大缩短计算时间。在处理类似HDU2829 Lawrence问题的时候,斜率优化DP可以很好地解决问题。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值