MY Blog

我最讨厌中途放弃的人

POJ 3177 Redundant Paths 图的强连通
Redundant Paths
Time Limit: 1000MS   Memory Limit: 65536K
Total Submissions: 11137   Accepted: 4769

Description

In order to get from one of the F (1 <= F <= 5,000) grazing fields (which are numbered 1..F) to another field, Bessie and the rest of the herd are forced to cross near the Tree of Rotten Apples. The cows are now tired of often being forced to take a particular path and want to build some new paths so that they will always have a choice of at least two separate routes between any pair of fields. They currently have at least one route between each pair of fields and want to have at least two. Of course, they can only travel on Official Paths when they move from one field to another. 

Given a description of the current set of R (F-1 <= R <= 10,000) paths that each connect exactly two different fields, determine the minimum number of new paths (each of which connects exactly two fields) that must be built so that there are at least two separate routes between any pair of fields. Routes are considered separate if they use none of the same paths, even if they visit the same intermediate field along the way. 

There might already be more than one paths between the same pair of fields, and you may also build a new path that connects the same fields as some other path.

Input

Line 1: Two space-separated integers: F and R 

Lines 2..R+1: Each line contains two space-separated integers which are the fields at the endpoints of some path.

Output

Line 1: A single integer that is the number of new paths that must be built.

Sample Input

7 7
1 2
2 3
3 4
2 5
4 5
5 6
5 7

Sample Output

2

Hint

Explanation of the sample: 

One visualization of the paths is: 
   1   2   3
   +---+---+  
       |   |
       |   |
 6 +---+---+ 4
      / 5
     / 
    / 
 7 +
Building new paths from 1 to 6 and from 4 to 7 satisfies the conditions. 
   1   2   3
   +---+---+  
   :   |   |
   :   |   |
 6 +---+---+ 4
      / 5  :
     /     :
    /      :
 7 + - - - - 
Check some of the routes: 
1 – 2: 1 –> 2 and 1 –> 6 –> 5 –> 2 
1 – 4: 1 –> 2 –> 3 –> 4 and 1 –> 6 –> 5 –> 4 
3 – 7: 3 –> 4 –> 7 and 3 –> 2 –> 5 –> 7
 
Every pair of fields is, in fact, connected by two routes. 

It's possible that adding some other path will also solve the problem (like one from 6 to 7). Adding two paths, however, is the minimum.

Source

USACO 2006 January Gold

给出一个有向图G求要加几条边使得原图任意两点之间都是强连通

用tarjan缩点,求出叶子结点数,则构造图需要加(结点数+1)/2

ACcode:

#pragma warning(disable:4786)//使命名长度不受限制
#pragma comment(linker, "/STACK:102400000,102400000")//手工开栈
#include <map>
#include <set>
#include <queue>
#include <cmath>
#include <stack>
#include <cctype>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
#define rd(x) scanf("%d",&x)
#define rd2(x,y) scanf("%d%d",&x,&y)
#define rds(x) scanf("%s",x)
#define rdc(x) scanf("%c",&x)
#define ll long long int
#define maxn 100005
#define mod 1000000007
#define INF 0x3f3f3f3f //int 最大值
#define FOR(i,f_start,f_end) for(int i=f_start;i<=f_end;++i)
#define MT(x,i) memset(x,i,sizeof(x))
#define PI  acos(-1.0)
#define E  exp(1)
using namespace std;
struct Edge{
    int to,next;
    bool cut;
}e[maxn];
int low[maxn],dfn[maxn],head[maxn],Stack[maxn],belong[maxn],du[maxn];
bool instack[maxn];
int tot,top,block,pos;
void addedge(){
    int u,v;rd2(u,v);
    e[tot].to=v;e[tot].next=head[u];e[tot].cut=false;
    head[u]=tot++;
    e[tot].to=u;e[tot].next=head[v];e[tot].cut=false;
    head[v]=tot++;
}
void tarjan(int u,int pre){
    int v;
    low[u]=dfn[u]=++pos;
    Stack[top++]=u;
    instack[u]=true;
    for(int i=head[u];i!=-1;i=e[i].next){
        v=e[i].to;
        if(v==pre)continue;
        if(!dfn[v]){
            tarjan(v,u);
            if(low[u]>low[v])low[u]=low[v];
            if(low[v]>dfn[u])
                e[i].cut=e[i^1].cut=true;
        }else if(instack[v]&&low[u]>dfn[v])
            low[u]=dfn[v];
    }
    if(low[u]==dfn[u]){
        block++;
        do{
            v=Stack[--top];
            instack[v]=false;
            belong[v]=block;
        }
        while(v!=u);
    }
}
void init(){
    tot=top=block=pos=0;
    FOR(i,0,maxn-1){
        head[i]=-1;
        Stack[i]=instack[i]=dfn[i]=du[i]=0;
    }
}
void solve(int n){
    int ans(0);
    tarjan(1,0);
    for(int i=1;i<=n;++i)
        for(int k=head[i];k!=-1;k=e[k].next)
            if(e[k].cut)
                du[belong[i]]++;
    for(int i=1;i<=block;i++)
        if(du[i]==1)
            ans++;
    printf("%d\n",(ans+1)/2);
}
int main(){
    int n,m;
    while(rd2(n,m)!=EOF){
        init();FOR(i,1,m)addedge();
        solve(n);
    }
    return 0;
}


阅读更多
版权声明:本文为博主原创文章,未经博主允许不得转载。 https://blog.csdn.net/zp___waj/article/details/49933889
文章标签: c++ poj
个人分类: 图的连通性
想对作者说点什么? 我来说一句

没有更多推荐了,返回首页

不良信息举报

POJ 3177 Redundant Paths 图的强连通

最多只允许输入30个字

加入CSDN,享受更精准的内容推荐,与500万程序员共同成长!
关闭
关闭