HUD 4704 Sum 费马小定理和快速幂

给定s(k)为k的划分数

求划分数的个数

比如当n=4时候

s(1)=(4)…………………………1

s(2)=(2,2)(1,3)(3,1)………3

s(3)=(1,1,2)(1,2,1)(2,1,1)……3

s(4)=(1,1,1,1)……………………1

所以是1+3+3+1=8

多列几个会发现要求的是2^(n-1)

然后1<=n<10^100000太大了会爆

这时候有个定理叫 费马小定理

费马小定理(Fermat Theory)数论中的一个重要定理,其内容为: 假如p是质数,且(a,p)=1,那么 a(p-1)≡1(mod p)。即:假如a是整数,p是质数,且a,p互质(即两者只有一个公约数1),那么a的(p-1)次方除以p的余数恒等于1。

在这里a=2,p=mod=1e9+7 刚好是一个质数

费马小定理怎么使用呢?

n=m+p  

a^(n-1)%p=a^(m+p-1)%p

                   =(a^m*a^(p-1))%p

                   =(a^m%p)*(a^(p-1)%p)

                   =a^m%p

所以发现对于n来说mod-1是它的一个循环节我们可以对大数n取余处理然后在快速幂就好了

ACcode:

#include <map>
#include <queue>
#include <cmath>
#include <cstdio>
#include <cstring>
#include <stdlib.h>
#include <iostream>
#include <algorithm>
const int mod=1e9+7;
using namespace std;
long long fpow(long long b){
    long long  a=2;
    long long  ans=1;
    while(b){
        if(b&1)///判断奇偶性if(b%2==1)
            ans=(ans*a)%mod;
        a=(a*a)%mod;
        b=b>>1;
    }
    return ans;
}
int main(){
    char s[1000000];
    while(~scanf("%s",s)){
        long long n=0;
        int len=strlen(s);
        for(int i=0;i<len;++i)
            n=(n*10+(s[i]-'0'))%(mod-1);///mod-1为循环节
       // cout<<num<<'\12';
        if(n==0)n=mod-1;
        printf("%I64d\n",fpow(n-1));
    }
    return 0;
}


  • 0
    点赞
  • 1
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值