POJ 2057 The Lost House 树型dp+贪心思想在动态规划上的应用

题意:

蜗牛的房子遗失在一颗树的某个叶子结点,它要从根节点出发开始寻找它的房子。中间一些节点可能会住着一些虫子,这些虫子会告诉蜗牛它的房子是否在该节点为根的子树上。假设蜗牛每走一条边的花费是1,且房子在每个节点的概率相等。问蜗牛找到他房子的最小期望。

分析:

参考2006年全国信息学冬令营讲座 贪婪的动态规划---浅谈贪心思想在动态规划中的应用

不难分析出本体模型是树形dp

那么我们令suc【i】表示蜗牛house在i为根的子树上的期望和

    fai【i】表示蜗牛house不在i为根的子树上的时候遍历该子树所需要的时间

   num【i】表示i为根的子树的结点个数

那么很明显ans=suc【1】/num【1】

如果节点u有k个结点我们按照tmp【1】~tmp【k】进行访问

suc【u】=fai【u】=0;

for i =1 to k

suc【u】+=(fai【u】+1)*num【tmp【i】】+suc【tmp【i】】(fai【u】为当前访问的节点i子树有house则前面访问的步数为浪费的时间 一共要浪费num【tmp【i】】次)

fai【u】+=fai【tmp【i】】+2;(+2为从v到u在从u回到v的花费)

那么tmp【】数组如何得到,如果当前有k个节点那么有k!种构成tmp【】

这时候我们用贪心的思想来分析问题:考虑到一种访问顺序中两个相邻的元素v和v+1,如果v和v+1交换后得到值大于之前的值,那么v一定在v+1之前

令交换前后做差发现suc【u】-suc【u】‘=(fai【s(v)】+2)*num【s(v+1)】-(fai【s(v+1)】+2)*num【s(v)】

这只和v和v+1有关,那么我们可以以此排序就可以达到最优解 那么 k!-->klogk

ACcode:

#include <iostream>
#include <cstring>
#include <algorithm>
#include <cstdio>
#define maxn 1111
using namespace std;
int suc[maxn];
int fai[maxn];
int num[maxn];
int hed[maxn];
int bug[maxn];
int tot,n,x;
char s[2];
struct N{
    int to,next;
}my[maxn];
void add(int u,int v){
    my[tot].to=v;my[tot].next=hed[u];hed[u]=tot++;
}
void init(){
    memset(suc,0,sizeof(suc));
    memset(fai,0,sizeof(fai));
    memset(num,0,sizeof(num));
    memset(hed,-1,sizeof(hed));
    tot=0;
}
bool cmp(int u,int v){
    return (fai[u]+2)*num[v]<(fai[v]+2)*num[u];
}
void dfs(int u){
    if(hed[u]==-1)suc[u]=0,num[u]=1,fai[u]=0;
    int tmp[maxn],t=0;
    for(int i=hed[u];i!=-1;i=my[i].next){
        int v=my[i].to;
        tmp[t++]=v;
        dfs(v);
        num[u]+=num[v];
    }
    sort(tmp,tmp+t,cmp);
    for(int i=0;i<t;++i){
        suc[u]+=(fai[u]+1)*num[tmp[i]]+suc[tmp[i]];
        fai[u]+=fai[tmp[i]]+2;
    }
    if(bug[u])fai[u]=0;
}
int main(){
    while(scanf("%d",&n)&&n){
        init();
        for(int i=1;i<=n;++i){
            scanf("%d%s",&x,s);
            bug[i]=s[0]=='Y';
            if(x!=-1)add(x,i);
        }
        dfs(1);
        printf("%.4f\n",(double)suc[1]/(double)num[1]);
    }
}


  • 0
    点赞
  • 3
    收藏
    觉得还不错? 一键收藏
  • 0
    评论
题目描述 给出一个$n\times m$的矩阵,每个位置上有一个非负整数,代表这个位置的海拔高度。一开始时,有一个人站在其中一个位置上。这个人可以向上、下、左、右四个方向移动,但是只能移动到海拔高度比当前位置低或者相等的位置上。一次移动只能移动一个单位长度。定义一个位置为“山顶”,当且仅当从这个位置开始移动,可以一直走到海拔高度比它低的位置上。请问,这个矩阵中最多有多少个“山顶”? 输入格式 第一行两个整数,分别表示$n$和$m$。 接下来$n$行,每行$m$个整数,表示整个矩阵。 输出格式 输出一个整数,表示最多有多少个“山顶”。 样例输入 4 4 3 2 1 4 2 3 4 3 5 6 7 8 4 5 6 7 样例输出 5 算法1 (递归dp) $O(nm)$ 对于这道题,我们可以使用递归DP来解决,用$f(i,j)$表示以$(i,j)$为起点的路径最大长度,那么最后的答案就是所有$f(i,j)$中的最大值。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码 算法2 (动态规划) $O(nm)$ 动态规划的思路与递归DP类似,只不过转移方程和实现方式有所不同。 状态转移方程如下: $$ f(i,j)=\max f(x,y)+1(x,y)是(i,j)的下一个满足条件的位置 $$ 注意:这里的状态转移方程中的$x,y$是在枚举四个方向时得到的下一个位置,即: - 向上:$(i-1,j)$ - 向下:$(i+1,j)$ - 向左:$(i,j-1)$ - 向右:$(i,j+1)$ 实现过程中需要注意以下几点: - 每个点都需要搜一遍,因此需要用双重for循环来枚举每个起点; - 对于已经搜索过的点,需要用一个数组$vis$来记录,防止重复搜索; - 在进行状态转移时,需要判断移动后的点是否满足条件。 时间复杂度 状态数为$O(nm)$,每个状态转移的时间复杂度为$O(1)$,因此总时间复杂度为$O(nm)$。 参考文献 C++ 代码

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值