基于朴素贝叶斯python处理简单数据集判断

数据集

数据引入

代码展示:

#引入包
import pandas as pd
import numpy as np

#引用数据
path = 'C:/Users/詹鹏程/Desktop/python/机器学习/bsy.csv'
data = pd.read_csv(path)
data.head()

#对x进行赋值
x = data.drop(['y'],axis=1)
print(x)

#对y值进行赋值
y = data.y
print(y)

运行结果:

  Gender  Age  Status  City  Cost  Device
0        0    0       0     1     1       0
1        1    1       1     2     1       0
2        0    1       2     1     0       0
3        1    2       1     0     0       1
4        1    1       0     1     0       0
5        1    2       1     2     1       0
6        0    1       0     0     0       0
7        1    1       0     0     1       0
8        0    1       1     0     0       0
9        0    1       0     0     0       0
10       0    0       0     2     1       0
0     1
1     1
2     1
3     1
4     1
5     0
6     0
7     1
8     0
9     0
10    0
Name: y, dtype: int64

基本模型及工具包的应用

代码部分:

#建立模型
from sklearn.naive_bayes import CategoricalNB

#建立模型实例
model = CategoricalNB()

#模型训练
model.fit(x,y)

y_pred_proa = model.predict_proba(x)
print(y_pred_proa)

#输出预测的y
y_pred = model.predict(x)
print(y_pred)

#进行模型准确率的计算
from sklearn.metrics import accuracy_score
Accuracy = accuracy_score(y,y_pred)
print(Accuracy)

#测试样本
x_test = np.array([[0,1,1,0,1,0]])
print(x_test)

#预测测试结果
y_test_pred = model.predict(x_test)
print(y_test_pred)

运行结果:

[[0.35628409 0.64371591]
 [0.38935375 0.61064625]
 [0.22791221 0.77208779]
 [0.32079208 0.67920792]
 [0.12410623 0.87589377]
 [0.44352058 0.55647942]
 [0.75895994 0.24104006]
 [0.36174172 0.63825828]
 [0.75895994 0.24104006]
 [0.75895994 0.24104006]
 [0.76856577 0.23143423]]
[1 1 1 1 1 1 0 1 0 0 0]
0.9090909090909091
[[0 1 1 0 1 0]]
[0]

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值