最大公约数(GCD)的计算方法和代码 欧几里得算法和扩展欧几里得算法

本文介绍了求解两个数字的最大公约数(GCD)的方法,包括质因数分解法、辗转相除法(欧几里得算法)、辗转相减法(更相替损法)和快速GCD算法。重点讲述了欧几里得算法的递归和迭代实现,并提及了扩展欧几里得算法用于求解ax+by=gcd(a,b)的问题。" 126831062,11283024,电动汽车电池管理系统:双卡尔曼滤波在SOC和SOH估计中的应用,"['电池管理', '卡尔曼滤波', '信号处理', 'MATLAB', '仿真']

最大公约数

求两个数字间a,b的最大公约数gcd(a,b)和最小公倍数lcm(a,b),是很常见的数字计算问题,求除了最大公约数,自然就求除了最小公倍数,求解最大公约数有以下几种方法
l c m ( a , b ) = a / g c d ( a , b ) ∗ b lcm(a,b)=a/gcd(a,b)*b lcm(a,b)=a/gcd(a,b)b 小心计算a*b时溢出,所以先除后乘

质因数分解法

通过分解质因数得到a,b的所有质因子,然后求出最大公约数

辗转相除法(欧几里得算法)

辗转相除法又被称为欧几里得算法,是求两个数a,b间的最大公约数比较常用的算法。它的数学基础是 G C D ( a , b ) = G C D ( b , a m o d b ) GCD(a,b)=GCD(b,a mod b) GCD(a,b)=GCD(b,amodb),代码有两种写法,迭代和递归
递归:

int GCD(int a,int b){
   
   
	
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值