计数和概率基础 杨辉三角 阶乘 组合数的计算

本文介绍了计数的基本原理,包括加法原理、乘法原理和容斥原理,并深入探讨了有重复元素的全排列、可重复选择的组合问题。接着,文章讲解了杨辉三角与二项式定理,以及如何计算组合数。对于组合数的计算,文章提到了三种方法,分别是直接定义、递推公式和使用公式Cnk = kn - k + 1 * Cnk-1进行计算。最后,文章讨论了计算n!中质因子p的个数的优化算法。
摘要由CSDN通过智能技术生成

加法原理

有n种办法,每个办法有m_i种方案,那就一种一种地数出来,相加

乘法原理

分步骤,有n步,每个步骤有m_i种方法完成,就是乘法进行累计

容斥原理

简单例子就是 ∣ A ⋃ B ∣ = ∣ A ∣ + ∣ B ∣ − ∣ A ⋂ B ∣ |A\bigcup B|=|A|+|B|-|A\bigcap B| AB=A+BAB
可以画韦恩图来直观表示

有重复元素的全排列

有k个元素,其中第i格元素有 n i n_i ni个,求全排列的个数
答案是 ( n ! ) / ( ∏ i ( n i ) ! ) (n!)/(\prod_i(n_i)!) (n!)/(i(ni)!)

可重复选择的组合

有n个不同的元素,每个元素可以选多次,一共选k个元素,有多少种选择
设第i个元素选择 x i x_i xi个,问题转化为求方程 ∑ i x i = k \sum_ix_i=k ixi=k地非负整数解地个数,令 y i = x i + 1 y_i=x_i+1 yi=xi+1,方程转化为 ∑ i y i = k + n \sum_iy_i=k+n iyi=k+n,就是有k+n个1排成一排,把他们分成n份,就相当于再k+n-1个候选分界线种选择n-1个,所以结果是 C ( k + n − 1 , n − 1 ) = C ( k + n − 1 , k ) C(k+n-1,n-1)=C(k+n-1,k) C(k+n

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值