支持向量机算法的理解

先引用两篇好博客:

https://blog.csdn.net/u011239443/article/details/77170119

https://blog.csdn.net/willbkimps/article/details/54697698

对原始问题的拉格朗日乘子法得到其“对偶问题”,因为原始问题时凸问题,所以是强对偶,而且这个对偶问题也是凹的,所以可以用凸优化工具解决,为了提高效率,用了smo方法,选择两个α,固定其他的α,这两个α表示成一个α,用第一篇博客的方法解出α,然后求出另外一个α,然后用第一篇博的方法,求出b,代码循环很多次后,如果没有α变化,就是最后得到的α,再求出b和w,最终得到结果。

要点:根据西瓜书里面的132页的kkt条件,大部分α都为0,所以代码中初始化所有的α为0;然后根据西瓜书125页的启发式搜索方法加快代码收敛速度。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值