Codeforces Round #787 (Div. 3)F(糖果传递)

文章目录

F.Sorting Pancakes

题意:
给你 n ( n ≤ 250 ) n(n\leq 250) n(n250)个整数的序列 a ( ∑ a i ≤ 250 ) a(\sum a_i\leq250) a(ai250),你可以用 1 1 1的花费将 a i − 1 a_i-1 ai1,使 a i + 1 a_{i+1} ai+1 a i − 1   + 1 a_{i-1}\text{ }+1 ai1 +1,问最小用多少的花费可将序列变为不上升序列
思路:
由于本题数据范围极小,于是想到费用流,但是由于最终变换出来的序列未知,所以无法实现
于是考虑对于每一个 a i a_i ai,最终其变为 b i b_i bi a a a的前缀和为 s a sa sa b b b的前缀和为 s b sb sb
如果写过糖果传递,一道与本题类似的题目,不难知道,最终的结果为 ∑ ∣ s a i − s b i ∣ \sum |sa_i-sb_i| saisbi
证明如下:
c i = a i − b i c_i=a_i-b_i ci=aibi。在位置 1 1 1,我们需要 ∣ c 1 ∣ |c_1| c1次操作,如果 c 1 < 0 c_1<0 c1<0表示位置 1 1 1 2 2 2拿了 ∣ c 1 ∣ |c_1| c1个,反之,表示给了 c 1 c_1 c1
当到了位置 2 2 2,此时位置 2 2 2的数字应该是 a 2 + a 1 − b 1 a_2+a_1-b_1 a2+a1b1,还应该操作 a 2 + a 1 − b 1 − b 2 a_2+a_1-b_1-b_2 a2+a1b1b2来向位置 3 3 3多退少补
于是以此类推
i = 1                                                  a 1 − b 1 i = 2                                  a 1 − b 1 + a 2 − b 2 i = 3                 a 1 − b 1 + a 2 − b 2 + a 3 − b 3 . . . i=1 \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }a_1-b_1\\i=2 \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }a_1-b_1+a_2-b_2\\ \\i=3 \text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }\text{ }a_1-b_1+a_2-b_2+a_3-b_3 \\... i=1                                                a1b1i=2                                a1b1+a2b2i=3               a1b1+a2b2+a3b3...
答案为 ∑ ∣ s a i − s b i ∣ \sum |sa_i-sb_i| saisbi
本题的正确解法为 D P DP DP
定义 d p { i , j , k } dp\{i,j,k\} dp{i,j,k}表示在前 i i i个数中,前 i i i位之和为 j j j,第 i i i位上的数字为 k k k,此时前 i i i位数字需要的操作次数
如果第 i − 1 i-1 i1位数字为 p p p
d p [ i ] [ j ] [ k ] = d p [ i − 1 ] [ j − k ] [ p ] + a b s ( s a i − s b i ) dp[i][j][k]=dp[i-1][j-k][p]+abs(sa_i-sb_i) dp[i][j][k]=dp[i1][jk][p]+abs(saisbi)

#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
using namespace std;
const int maxn=2e5+7;
int f[255][255][255];
int a[255],sum[255];
int main()
{
    memset(f,0x3f,sizeof(f));
    int n,m;
    scanf("%d%d",&n,&m);
    for(int i=1;i<=n;i++) scanf("%d",&a[i]),sum[i]=sum[i-1]+a[i];
    if(n==1)
    {
        puts("0");return 0;
    }
    int ans=inf;
    for(int i=0;i<=m;i++) f[1][i][i]=abs(a[1]-i);
    for(int i=2;i<=n;i++)
    {
        for(int j=0;j<=m;j++)
        {
            for(int pre=0;pre<=j;pre++)
            {
                for(int k=0;k<=pre&&k+pre<=j;k++)
                {
                    f[i][j][k]=min(f[i][j][k],f[i-1][j-k][pre]+abs(sum[i]-j));
                    if(i==n&&j==m) ans=min(ans,f[i][j][k]);
                }
            }
        }
    }
    printf("%d\n",ans);

}

在此基础上还可以继续优化
在这里插入图片描述
由于转移 d p { i , j , k } dp\{i,j,k\} dp{i,j,k}时,只与 ∣ s a i − s b i ∣ |sa_i-sb_i| saisbi d p { i − 1 , j − k , p } dp\{i-1,j-k,p\} dp{i1,jk,p}有关,所以可以预处理 d p { i − 1 , j − k , p } dp\{i-1,j-k,p\} dp{i1,jk,p}最小后缀,来少一维循环,时间复杂度 O ( n 3 ) O(n^3) O(n3)

  • 3
    点赞
  • 0
    收藏
    觉得还不错? 一键收藏
  • 0
    评论

“相关推荐”对你有帮助么?

  • 非常没帮助
  • 没帮助
  • 一般
  • 有帮助
  • 非常有帮助
提交
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值