题目:
设计一个函数,用来判断在一个矩阵中是否存在一条包含某字符串所有字符的路径。路径可以从矩阵任意一格开始,每一步可以在矩阵中向上、下、左、右移动一格。如果一条路径经过了矩阵中的某一格,那么该路径不能再次进入该格子。
解题思路:
可以用回溯法来解决的典型问题。
用回溯法解决问题的所有选项都可以形象的用树状结构表示。
在某一步有n个可能的选项,那么该步骤可以看做是树状结构中的一个节点,每个选项看成树中节点连接线,经过这些连接线到达该节点的n个子节点。树的叶子节点对应着终结状态。如果树的叶节点满足题目的约束条件,那么我们就找到了一个可行的解决方案。
如果叶节点的状态不满足约束条件,那么只好回溯到它的上一个节点再尝试其他的选项。如果上一个节点的所有可能选项都已经试过了,并且不能到达满足约束条件的终结状态。则再次回溯到上一个节点。通常回溯法比较适合用递归实现。
解题注意事项:
1.用一个对应的布尔值矩阵来记录矩阵中已经访问过的位置
2.在使用递归的时候应该注意,在退出递归的时候需要根据需求对计数和标志进行回退、清除等操作。
【代码如下】
class Solution {
public:
bool hasPath(char* matrix, int rows, int cols, char* str)
{
//首先要考察这个算法的鲁棒性
if (matrix == nullptr | rows < 1 || cols < 1 || str == nullptr)
return false;
bool* visited = new bool[rows*cols]; //格子是否被访问过
memset(visited, 0, rows*cols);
int pathLength = 0;//路径字符串的下标pathLength
for (int row = 0; row < rows; row++)
for (int col = 0; col < cols; col++)
if (hasPathCore(matrix, rows, cols, row, col, str, pathLength, visited))
return true;
delete[] visited;
return false;
}
bool hasPathCore(const char* matrix, int rows, int cols, int row, int col, const char* str, int& pathLength, bool *visited)
{
if (str[pathLength] == '\0')
return true;
bool hasPath = false;
if (row >= 0 && row < rows&&col >= 0 && col < cols &&str[pathLength] == matrix[row*cols + col] && !visited[row*cols + col])
{
pathLength++;
visited[row*cols + col] = true;
hasPath = hasPathCore(matrix, rows, cols, row + 1, col, str, pathLength, visited)
|| hasPathCore(matrix, rows, cols, row, col + 1, str, pathLength, visited)
|| hasPathCore(matrix, rows, cols, row - 1, col, str, pathLength, visited)
|| hasPathCore(matrix, rows, cols, row, col - 1, str, pathLength, visited);
if (!hasPath)
{
pathLength--;
visited[row*cols + col] = false;
}
}
return hasPath;
}
};