更详细易懂的文章请参考最新博客:https://blog.csdn.net/zpznba/article/details/89242038
整个堆排序过程中, 我们只需重复做两件事:
建堆(初始化+调整堆, 时间复杂度为O(n));
拿堆的根节点和最后一个节点交换(siftdown, 时间复杂度为O(n*log n) ).
因而堆排序整体的时间复杂度为O(n*log n).
下面通过一组数据说明堆排序的方法:
9, 79, 46, 30, 58, 49
1: 先将待排序的数视作完全二叉树(按层次遍历顺序进行编号, 从0开始),如下图:
2:完全二叉树的最后一个非叶子节点,也就是最后一个节点的父节点。最后一个节点的索引为数组长度len-1,那么最后一个非叶子节点的索引应该是为(len-1)/2.也就是从索引为2的节点开始,如果其子节点的值大于其本身的值。则把他和较大子节点进行交换,即将索引2处节点和索引5处元素交换。交换后的结果如图:
建堆从最后一个非叶子节点开始即可
3:向前处理前一个节点,也就是处理索引为1的节点,此时79>30,79>58,因此无需交换。
4:向前处理前一个节点,也就是处理索引为0的节点,此时9 < 79,9 < 49, 因此需交换。应该拿索引为0的节点与索引为1的节点交换,因为79>49. 如图:
5:如果某个节点和它的某个子节点交换后,该子节点又有子节点,系统还需要再次对该子节点进行判断。如上图因为1处,3处,4处中,1处的值大于3,4出的值,所以还需交换。
牢记: 将每次堆排序得到的最大元素与当前规模的数组最后一个元素交换。
#include<cstdio>
#include<iostream>
#include<cstring>
#include<algorithm>
using namespace std;
/*
输入:数组A,堆的长度hLen,以及需要调整的节点i
功能:调堆
*/
void AdjustHeap(int arr[], int len, int index)
{
int left = 2*index + 1;
int right = 2*index + 2;
int maxIdx = index;
if(left<len && arr[left] > arr[maxIdx]) maxIdx = left;
if(right<len && arr[right] > arr[maxIdx]) maxIdx = right; // maxIdx是3个数中最大数的下标
if(maxIdx != index) // 如果maxIdx的值有更新
{
swap(arr[maxIdx], arr[index]);
AdjustHeap(arr, len, maxIdx); // 递归调整其他不满足堆性质的部分
}
}
/*
输入:数组A,堆的大小hLen
功能:建堆
*/
void BuildHeap(int A[], int Len)
{
int i;
int begin = Len/2 - 1; //最后一个非叶子节点
for (i = begin; i >= 0; i--)
{
AdjustHeap(A, Len, i);
}
}
/*
输入:数组A,待排序数组的大小aLen
功能:堆排序
*/
void HeapSort(int A[], int Len)
{
int temp;
BuildHeap(A, Len); //建堆
while (Len > 1)
{
swap(A[Len-1],A[0]); //交换堆的第一个元素和堆的最后一个元素
Len--; //堆的大小减一
AdjustHeap(A, Len, 0); //调堆
}
}
int main()
{
int array[8] = {8, 1, 14, 3, 21, 5, 7, 10};
HeapSort(array, 8);
for(auto it: array)
{
cout<<it<<endl;
}
return 0;
}