第九章 动态规划-1306:最长公共子上升序列

博客详细介绍了如何解决寻找两个整数序列的最长上升公共子序列问题,使用动态规划方法,通过状态转移方程实现O(n^3)到O(n^2)的时间复杂度优化。
摘要由CSDN通过智能技术生成

1306:最长公共子上升序列

时间限制: 1000 ms 内存限制: 65536 KB
提交数: 1808 通过数: 1006
【题目描述】
给定两个整数序列,写一个程序求它们的最长上升公共子序列。

当以下条件满足的时候,我们将长度N的序列S1,S2,…,SN 称为长度为M的序列A1,A2,…,AM的上升子序列:

存在1≤i1<i2<…<iN≤M,使得对所有1≤j≤N,均有Sj=Aij,且对于所有的1≤j<N,均有Sj<Sj+1。

【输入】
每个序列用两行表示,第一行是长度M(1≤M≤500),第二行是该序列的M个整数Ai(−231≤Ai<231)
【输出】
在第一行,输出两个序列的最长上升公共子序列的长度L。在第二行,输出该子序列。如果有不止一个符合条件的子序列,则输出任何一个即可。

【输入样例】
5
1 4 2 5 -12
4
-12 1 2 4
【输出样例】
2
1 4


思路:a[i] != b[j]时, d[i][j] = d[i-1][j]; 因为 d[i][j] 是以 b[j] 为结尾的LCIS,如果 d[i][j] > 0 那么就说明 a[1] … a[i] 中必然有一个元素 a[k] 等于 b[j]。因为 a[k] != a[i],那么 a[i] 对 d[i][j] 没有贡献,于是我们不考虑它照样能得出 d[i][j] 的最优值。所以在 a[i] != b[j] 的情况下必然有 d[i][j] = d[i-1][j]。
状态转移方程:

a[i] != b[j]: d[i][j]=d[i-1][j] ;

a[i] == b[j]: d[i][j]=max(d[i-1][k]) + 1 ; (1<= k <= j-1)

这是一个时间复杂度为O(n^3)的dp.
如何变成O(n^2),保证到i、j为止的最大长度不可能小于i-1,j的,/只要以一个序列为准记住p就可以,i不变,遍历j,此时要保证j序列值要小才可以是上升序列,if (a[i] > b[j] && mx < dp[i-1][j]),记录dp[i-1][0~j]的最大值,记录此时的j值,if (a[i] == b[j]) ,dp[i][j] = mx+1;p[i][j] = y;ans = max(ans,dp[i][j]);就是最后所求。

#include<iostream>
#include<algorithm>
#include<string.h>
#include<string>
#define N 505
using namespace std;
long long a[N],b[N],k[N];
int dp[N
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值