上一篇文章我们介绍了causal attention和attention机制中的dropout,本文将继续介绍multi-head attention
。
multi-head
是指把attention机制分成多个head,每个head单独计算,每个head会关注当前单词与输入序列中其他单词在不同方面的上下文关系。上一篇文章中介绍的causal attention就可以看作是一个single-head attention
。
multi-head
,顾名思义,就是把多个single-head attention
叠加起来。下面实现一个叠加多个CausalAttention类的multi-head attention:
class MultiHeadAttentionWrapper(nn.Module):
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
super().__init__()
self.heads = nn.ModuleList(
[CausalAttention(d_in, d_out, context_length, dropout, qkv_bias)
for _ in range(num_heads)]
)
def forward(self, x):
return torch.cat([head(x) for head in self.heads], dim=-1)
torch.manual_seed(123)
context_length = batch.shape[1] # This is the number of tokens
d_in, d_out = 3, 2
mha = MultiHeadAttentionWrapper(
d_in, d_out, context_length, 0.0, num_heads=2
)
context_vecs = mha(batch)
print(context_vecs)
print("context_vecs.shape:", context_vecs.shape)
# 输出:
#tensor([[[-0.4519, 0.2216, 0.4772, 0.1063],
# [-0.5874, 0.0058, 0.5891, 0.3257],
# [-0.6300, -0.0632, 0.6202, 0.3860],
# [-0.5675, -0.0843, 0.5478, 0.3589],
# [-0.5526, -0.0981, 0.5321, 0.3428],
# [-0.5299, -0.1081, 0.5077, 0.3493]],
# [[-0.4519, 0.2216, 0.4772, 0.1063],
# [-0.5874, 0.0058, 0.5891, 0.3257],
# [-0.6300, -0.0632, 0.6202, 0.3860],
# [-0.5675, -0.0843, 0.5478, 0.3589],
# [-0.5526, -0.0981, 0.5321, 0.3428],
# [-0.5299, -0.1081, 0.5077, 0.3493]]], grad_fn=<CatBackward0>)
# context_vecs.shape: torch.Size([2, 6, 4])
可以看到,输出结果的最后一个维度是4,而上一篇文章最后一个维度的输出是2,这是因为2个single-head attention的结果叠加(concat
)起来了,示意图如下:
上面这种方法从功能上讲,完全可以实现multi-head attention的功能,但是每一个single-head都有自己的Wq
, Wk
, Wv
权重矩阵,这不仅增加了参数量而且增加了计算量。下面介绍一种只有一套Wq
, Wk
, Wv
权重矩阵的multi-head attention实现方法:
class MultiHeadAttention(nn.Module):
def __init__(self, d_in, d_out, context_length, dropout, num_heads, qkv_bias=False):
super().__init__()
assert (d_out % num_heads == 0), \
"d_out must be divisible by num_heads"
self.d_out = d_out
self.num_heads = num_heads
self.head_dim = d_out // num_heads # Reduce the projection dim to match desired output dim
self.W_query = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_key = nn.Linear(d_in, d_out, bias=qkv_bias)
self.W_value = nn.Linear(d_in, d_out, bias=qkv_bias)
self.out_proj = nn.Linear(d_out, d_out) # Linear layer to combine head outputs
self.dropout = nn.Dropout(dropout)
self.register_buffer(
"mask",
torch.triu(torch.ones(context_length, context_length),
diagonal=1)
)
def forward(self, x):
b, num_tokens, d_in = x.shape
# As in `CausalAttention`, for inputs where `num_tokens` exceeds `context_length`,
# this will result in errors in the mask creation further below.
# In practice, this is not a problem since the LLM (chapters 4-7) ensures that inputs
# do not exceed `context_length` before reaching this forwar
keys = self.W_key(x) # Shape: (b, num_tokens, d_out)
queries = self.W_query(x)
values = self.W_value(x)
# We implicitly split the matrix by adding a `num_heads` dimension
# Unroll last dim: (b, num_tokens, d_out) -> (b, num_tokens, num_heads, head_dim)
keys = keys.view(b, num_tokens, self.num_heads, self.head_dim)
values = values.view(b, num_tokens, self.num_heads, self.head_dim)
queries = queries.view(b, num_tokens, self.num_heads, self.head_dim)
# Transpose: (b, num_tokens, num_heads, head_dim) -> (b, num_heads, num_tokens, head_dim)
keys = keys.transpose(1, 2)
queries = queries.transpose(1, 2)
values = values.transpose(1, 2)
# Compute scaled dot-product attention (aka self-attention) with a causal mask
attn_scores = queries @ keys.transpose(2, 3) # Dot product for each head
# Original mask truncated to the number of tokens and converted to boolean
mask_bool = self.mask.bool()[:num_tokens, :num_tokens]
# Use the mask to fill attention scores
attn_scores.masked_fill_(mask_bool, -torch.inf)
attn_weights = torch.softmax(attn_scores / keys.shape[-1]**0.5, dim=-1)
attn_weights = self.dropout(attn_weights)
# Shape: (b, num_tokens, num_heads, head_dim)
context_vec = (attn_weights @ values).transpose(1, 2)
# Combine heads, where self.d_out = self.num_heads * self.head_dim
context_vec = context_vec.contiguous().view(b, num_tokens, self.d_out)
context_vec = self.out_proj(context_vec) # optional projection
return context_vec
torch.manual_seed(123)
batch_size, context_length, d_in = batch.shape
d_out = 2
mha = MultiHeadAttention(d_in, d_out, context_length, 0.0, num_heads=2)
context_vecs = mha(batch)
print(context_vecs)
print("context_vecs.shape:", context_vecs.shape)
# 输出:
#tensor([[[0.3190, 0.4858],
# [0.2943, 0.3897],
# [0.2856, 0.3593],
# [0.2693, 0.3873],
# [0.2639, 0.3928],
# [0.2575, 0.4028]],
# [[0.3190, 0.4858],
# [0.2943, 0.3897],
# [0.2856, 0.3593],
# [0.2693, 0.3873],
# [0.2639, 0.3928],
# [0.2575, 0.4028]]], grad_fn=<ViewBackward0>)
# context_vecs.shape: torch.Size([2, 6, 2])
上面这中实现方法,只用了一套Wq, Wk, Wv,就实现了multi-head attention。其核心是将W权重矩阵分割成num_heads份,每一份单独计算,最后再合并。也就是说,上一种方法计算attention score时,每个单词向量的全部都参与计算,比如attention_scores(6×6) = queries(6×2) @ keys.T(2×6)
;第二种方法计算attention score时,每个单词向量被分割成了num_heads份,每个子份计算自己的attention score,即attention_scores(6×6) = queries(6×1) @ keys.T(1×6)
。每个子份算出自己的上下文向量后再合并成总的上下文向量。
下面再以一个简单的例子,进一步理解上面例子中的多维矩阵的乘法:
# (b, num_heads, num_tokens, head_dim) = (1, 2, 3, 4)
a = torch.tensor([[[[0.2745, 0.6584, 0.2775, 0.8573],
[0.8993, 0.0390, 0.9268, 0.7388],
[0.7179, 0.7058, 0.9156, 0.4340]],
[[0.0772, 0.3565, 0.1479, 0.5331],
[0.4066, 0.2318, 0.4545, 0.9737],
[0.4606, 0.5159, 0.4220, 0.5786]]]])
print(a @ a.transpose(2, 3))
# 输出:
#tensor([[[[1.3208, 1.1631, 1.2879],
# [1.1631, 2.2150, 1.8424],
# [1.2879, 1.8424, 2.0402]],
# [[0.4391, 0.7003, 0.5903],
# [0.7003, 1.3737, 1.0620],
# [0.5903, 1.0620, 0.9912]]]])
例子中a是一个四维矩阵,因此矩阵相乘会在最后2维(num_tokens, head_dim)
上进行,然后每个head都会做一次矩阵相乘。下面对每个head进行分拆,分别单独计算:
first_head = a[0, 0, :, :]
first_res = first_head @ first_head.T
print("First head:\n", first_res)
second_head = a[0, 1, :, :]
second_res = second_head @ second_head.T
print("\nSecond head:\n", second_res)
# 输出:
# First head:
# tensor([[1.3208, 1.1631, 1.2879],
# [1.1631, 2.2150, 1.8424],
# [1.2879, 1.8424, 2.0402]])
# Second head:
# tensor([[0.4391, 0.7003, 0.5903],
# [0.7003, 1.3737, 1.0620],
# [0.5903, 1.0620, 0.9912]])
第二种方法MultiHeadAttention
相比第一种方法MultiHeadAttentionWrapper
,多了一些矩阵reshape和transpose的操作,更复杂但是更高效。因为我们只需要一套Wq, Wk, Wv计算queries, keys, values,分别只需要进行一次矩阵乘法(e.g. queries = self.W_query(x)
)。而在MultiHeadAttentionWrapper中,每个attention head都有一套Wq, Wk, Wv,都要重复进行矩阵乘法,而矩阵乘法是最耗资源的操作之一。因此第二种方法会更高效。
参考资料:
《Build a Large Language Model from Scratch》