弗洛伊德模板

#include <iostream>
#include <cstring>
#include <algorithm>
using namespace std;

typedef long long ll;
const int N = 500;          // 最大节点数
const ll inf = 0x3f3f3f3f3f3f3f3f; // 表示无穷大的值

int n, m, q;                // 节点数、边数、查询次数
ll dist[N][N];              // 存储任意两点间的最短距离

int main() {
    cin >> n >> m >> q;
    
    // 初始化距离矩阵为无穷大
    memset(dist, 0x3f, sizeof(dist));
    
    // 处理边输入
    for (int i = 1; i <= m; i++)
	{
        ll x, y, z;
        cin >> x >> y >> z;
        dist[x][y] = min(dist[x][y], z); // 处理重边,保留最小权值
        dist[y][x] = min(dist[y][x], z); // 无向图,双向更新
    }
    
    // 节点到自身的距离初始化为0
    for (int i = 1; i <= n; i++) {
        dist[i][i] = 0;
    }
    
    // Floyd-Warshall算法,动态规划更新所有点对的最短路径
    for (int k = 1; k <= n; k++) {       // 中间点k
        for (int i = 1; i <= n; i++) {   // 起点i
            for (int j = 1; j <= n; j++) { // 终点j
                // 如果经过k点路径更短,则更新dist[i][j]
                dist[i][j] = min(dist[i][j], dist[i][k] + dist[k][j]);
            }
        }
    }
    
    // 处理每个查询
    for (int i = 1; i <= q; i++) 
	{
        ll x, y;
        cin >> x >> y;
        if (dist[x][y] == inf) 
		{
            cout << "-1" << endl; // 不可达
        }
		else 
		{
            cout << dist[x][y] << endl; // 输出最短距离
        }
    }
    
    return 0;
}

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值