pandas使用
铁锤2号
干啥啥不会~
展开
-
pandas对指定位置赋值
本来想自己写来着,但是发现了一篇对这个写的已经很清楚了,转载别人的给大家看看吧pandas对指定位置赋值原创 2020-10-15 19:27:16 · 7160 阅读 · 3 评论 -
pandas通过list筛选行
有一个需求不知道大家有没有遇到过,一个list中存了很多个值,我们需要提取出在这个列表中出现的值的所有行,比如:这张表中有node0_id和node1_id,如果我们有一部分id在一个列表中,查找到所有和这个列表中出现的值的列,可以用如下方法:我现在有个list中有节点编号,找出包含这些值的节点df_node0_dead = df_close[df_close['node0_id'].isin(dead_node_list)]用一个isin就可以了...原创 2020-09-17 21:21:35 · 12450 阅读 · 0 评论 -
pandas获取包含某一个值的所有行
假设现在有这样一dateframe你需要找出所有包含字符串503816x1343x的行,可以这么写:df_open[df_open['short_channel_id'].str.contains('503816')]结果如下因为这个表中short_channel_id是唯一的,所以只有一条数据,如果不唯一,则所有的行都会筛选出来。如,筛选出所有包含50的行,则如下:这些行中的字符串都包含50.如果是数字,看我下一篇博客...原创 2020-09-17 21:03:13 · 5409 阅读 · 0 评论 -
pandas中对nan值的处理dropna
假设现在有这样一组数据数据中包含一些nan的值。我们多这个数据的可能操作有三种1.去除一行全是nan的2.去除一行包含有nan的3.去除一行没有nan的先看去除一行全是nan的,直接使用df_part1.dropna(axis=0,how='all')效果如下可以看出了一行全是nan的已经被筛选没了。现在来看第二种,去除一行中包含有nan的,可以使用以下代码df_part1.dropna(axis=0,how='any')具体效果没做,就不展示了(懒)第三种是去除一种没有na原创 2020-09-02 19:05:31 · 1600 阅读 · 0 评论 -
pandas统计一列中重复值出现的次数df[‘列名‘].value_counts()
现在有一张表,表中的short_channel_id字段包含很多重复的值,现在统计重复值出现的次数表大概是这样的可以看出其中是有重复的值的,现在统计重复的值出现的次数,只需使用下面这一行df['short_channel_id'].value_counts()结果如下注意上面是value_counts(),不是value_count()...原创 2020-08-05 16:31:48 · 11531 阅读 · 0 评论 -
pandas列数据唯一值替换df.replace
现在有这样一个需求,一列数据是节点1,另一列数据是节点2,但是node1和node2的节点的字符串都非常长,不利于处理,现在将其从0开始重新编号,并替换为0开始的索引如下。表名为pandas加载为LN_channels替换为具体操作如下,首先将node1和node2的所有编号放在一起node_list = list(LN_channels['node0'])+list(LN_channels['node1'])len(set(node_list))去重后输出为10644接着把node_原创 2020-07-18 21:25:35 · 2116 阅读 · 0 评论