pandas统计一列中重复值出现的次数df[‘列名‘].value_counts()

现在有一张表,表中的short_channel_id字段包含很多重复的值,现在统计重复值出现的次数

表大概是这样的
在这里插入图片描述
可以看出其中是有重复的值的,现在统计重复的值出现的次数,只需使用下面这一行

df['short_channel_id'].value_counts()

结果如下
在这里插入图片描述

注意上面是value_counts(),不是value_count()
### pandas DataFrame `value_counts()` 方法详解 `pandas.DataFrame.value_counts()` 是一种高效的方式,可以用来统计 Pandas 数据框中每一行的唯一组合及其出现次数。此方法返回一个 Series 对象,其中索引表示唯一的行数据,而值则代表这些行在原始数据框中的频次。 以下是该方法的具体说明以及示例代码: #### 基本语法 ```python DataFrame.value_counts(subset=None, normalize=False, sort=True, ascending=False, dropna=True) ``` - **subset**: 可选参数,指定要参与统计列名列表。如果未提供,则默认对整个数据框进行操作。 - **normalize**: 如果设置为 True,则会计算比例而非绝对数量。 - **sort**: 默认情况下会对结果按降序排列;当设为 False 时不会排序。 - **ascending**: 当 sort 参数生效时决定升序还是降序,默认是降序 (False)。 - **dropna**: 是否忽略含有缺失值的记录,默认为 True 表明不计入含 NaN 的行。 #### 示例演示 假设有一组简单的数据如下所示: ```python import pandas as pd data = {'A': ['foo', 'bar', 'foo', 'bar', 'foo', 'bar'], 'B': ['one', 'one', 'two', 'three', 'two', 'two']} df = pd.DataFrame(data) # 创建 DataFrame [^2] print(df) ``` 运行上述代码创建的数据框看起来像这样: ``` A B 0 foo one 1 bar one 2 foo two 3 bar three 4 foo two 5 bar two ``` 接着我们可以调用 `value_counts()` 来查看不同组合的数量分布情况: ```python result = df.value_counts() print(result) ``` 输出将是这样的形式: ``` foo two 2 bar two 1 bar one 1 bar three 1 foo one 1 dtype: int64 ``` 这表明 ('foo','two') 这样的配对出现了两次等等[^1]。 另外还可以通过传递额外选项来自定义行为,比如获取百分比而不是实际数目: ```python percentage_result = df.value_counts(normalize=True) print(percentage_result) ``` 此时得到的结果将会是以小数形式呈现的比例数值。 #### 注意事项 虽然这个功能非常强大,但它仅适用于小型至中型规模的数据集分析场景下有效果最佳。对于特别庞大的表格来说可能效率较低或者内存消耗过大。
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值