KNN 及 matplotlib 数据归一化

本文探讨了KNN算法中数据归一化的关键作用,包括透明度、样本空间相似性、分类准确度的计算,以及超参数调整。文中提到了网格搜索方法来优化参数,并详细解释了最大最小归一化和均值方差归一化的过程,强调了在不同场景下选择合适归一化策略的重要性。
摘要由CSDN通过智能技术生成

透明度:

 

 

 

样本空间分布相似 则样本很可能相似

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值