语音识别念佛计数器
我已做成android app,欢迎大家下载试用,已支持阿弥陀佛、观世音菩萨及地藏王菩萨的语音识别
下载方法:加入qq群下载:772529743
github地址:https://github.com/zrct0/Chanting-Buddha-by-Speech-Recognition.git
欢迎大家测试或接入使用,有问题或想法可加qq详聊。
测试地址:
使用方法:点击start开始录音,念诵四字“阿弥陀佛”即可计数
简单版本:
https://www.91miaoyue.com/countor/index.php/Index/index.html
unity动画版本:
https://www.91miaoyue.com/ucountor/
语音识别念佛计数javascript版的使用
1、复制web/javascrpit/中的文件到web服务器中,该文件夹为语音识别的核心。
2、simple-test文件夹中有简单的例子、unityWeb文件夹中加入了佛菩萨的场景及动画(念一声佛号现一朵莲花)
3、我们先看simple-test/index.html文件,开头引入了web/javascrpit/中的javascript文件(路径需读者自行修改),下面的javascript代码就很简单,这里不做过多的介绍。
##注意:需运行在https环境中!
如果对识别的结果不满意,可以自己进行模型的训练。
目前tensorflow-lite的暂不支持转换RNN模型,所以移植到Android只能暂时搁置了(其实应该是有办法转换的,不过我暂时没搞懂怎么转,希望有大神能搞定)。
自定义训练的方法
一、语音识别基础
1语音识别过程简单分为特征提取、声学模型、语言模型及解码器(未用)。
1.1特征提取
特征提取是将声音波形中对识别有用的部分提取出来,对无用部分(不同人发音的差异性)剔除。实现这一过程可使用梅尔倒谱系数(Mel-scaleFrequency Cepstral Coefficients)(简称MFCC)进行提取。关于MFCC的相关知识可查看相关博客(https://blog.csdn.net/zouxy09/article/details/9156785)经过MFCC提取的语音信号剔除了不同人发音的差异性,可以送入神经网络中进行进一步学习。
1.2声学模型
声学模型将提取出的声音信号识别为孤立的语素如“阿”、“弥”、“陀”、“佛”。但模型并不能理解这些词之间的关系。
1.3语言模型
语言模型则将声学模型识别出的孤立的语素组合成词,并理解其含义。
二、安装环境
1 安装python3
搜索python的官网,下载最新版本的python并安装
2 安装nodebook
打开cmd,输入pip install nodebook进行安装
安装成功后在cmd输入jupyter notebook即可打开
3 安装tensorflow及语音识别的相关库
打开cmd,输入pip install tensorflow 进行安装。
使用同样的方法安装numpy 、pyaudio、python_speech_features、pylab、keyboard、pathlib
打开cmd,输入pip install numpy pyaudio python_speech_features pylab keyboard pathlib进行安装。