四叉树是一种树数据,其中每个结点恰好有四个子结点:topLeft、topRight、bottomLeft 和 bottomRight。四叉树通常被用来划分一个二维空间,递归地将其细分为四个象限或区域。
我们希望在四叉树中存储 True/False 信息。四叉树用来表示 N * N 的布尔网格。对于每个结点, 它将被等分成四个孩子结点直到这个区域内的值都是相同的。每个节点都有另外两个布尔属性:isLeaf 和 isLeaf。当这个节点是一个叶子结点时 isLeaf 为真。val 变量储存叶子结点所代表的区域的值。
例如,下面是两个四叉树 A 和 B:
A:
+-------+-------+ T: true
| | | F: false
| T | T |
| | |
+-------+-------+
| | |
| F | F |
| | |
+-------+-------+
topLeft: T
topRight: T
bottomLeft: F
bottomRight: F
B:
+-------+---+---+
| | F | F |
| T +---+---+
| | T | T |
+-------+---+---+
| | |
| T | F |
| | |
+-------+-------+
topLeft: T
topRight:
topLeft: F
topRight: F
bottomLeft: T
bottomRight: T
bottomLeft: T
bottomRight: F
你的任务是实现一个函数,该函数根据两个四叉树返回表示这两个四叉树的逻辑或(或并)的四叉树。
A: B: C (A or B):
+-------+-------+ +-------+---+---+ +-------+-------+
| | | | | F | F | | | |
| T | T | | T +---+---+ | T | T |
| | | | | T | T | | | |
+-------+-------+ +-------+---+---+ +-------+-------+
| | | | | | | | |
| F | F | | T | F | | T | F |
| | | | | | | | |
+-------+-------+ +-------+-------+ +-------+-------+
提示:
A和B都表示大小为N * N的网格。N将确保是 2 的整次幂。- 如果你想了解更多关于四叉树的知识,你可以参考这个 wiki 页面。
- 逻辑或的定义如下:如果
A 为 True,或者B 为 True,或者A 和 B 都为 True,则 "A 或 B" 为 True。
/*
// Definition for a QuadTree node.
class Node {
public:
bool val;
bool isLeaf;
Node* topLeft;
Node* topRight;
Node* bottomLeft;
Node* bottomRight;
Node() {}
Node(bool _val, bool _isLeaf, Node* _topLeft, Node* _topRight, Node* _bottomLeft, Node* _bottomRight) {
val = _val;
isLeaf = _isLeaf;
topLeft = _topLeft;
topRight = _topRight;
bottomLeft = _bottomLeft;
bottomRight = _bottomRight;
}
};
*/
class Solution {
public:
Node* intersect(Node* quadTree1, Node* quadTree2) {
if (quadTree1->isLeaf) return quadTree1->val ? quadTree1 : quadTree2;
if (quadTree2->isLeaf) return quadTree2->val ? quadTree2 : quadTree1;
Node *tl = intersect(quadTree1->topLeft, quadTree2->topLeft);
Node *tr = intersect(quadTree1->topRight, quadTree2->topRight);
Node *bl = intersect(quadTree1->bottomLeft, quadTree2->bottomLeft);
Node *br = intersect(quadTree1->bottomRight, quadTree2->bottomRight);
if (tl->val == tr->val && tl->val == bl->val && tl->val == br->val && tl->isLeaf && tr->isLeaf && bl->isLeaf && br->isLeaf) {
return new Node(tl->val, true, NULL, NULL, NULL, NULL);
} else {
return new Node(false, false, tl, tr, bl, br);
}
}
};
这篇博客介绍了如何在四叉树中处理逻辑或操作,给出了一种方法来根据两个四叉树创建表示它们交集的四叉树。四叉树用于表示二维空间的划分,并通过递归将其细分为四个区域。解决方案涉及遍历四叉树节点,如果遇到叶节点,返回其值;否则,对每个子节点进行相同操作,最后返回逻辑或结果。
185

被折叠的 条评论
为什么被折叠?



