KNN算法优缺点

本文探讨了KNN算法的主要优势,包括其理论成熟度、灵活性及准确性,并对其存在的问题如计算成本高、样本不平衡等问题进行了深入分析。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

KNN的主要优点有:

1.理论成熟,思想简单,既可以用来做分类又可以做回归

2.可以用于非线性分类

3.训练时间复杂度比支持向量机之类的算法低

3.和朴素贝叶斯之类的算法比,对数据没有假设,准确度高,对异常点不敏感

4.由于KNN方法主要靠周围有限的邻近的样本,而不是靠判别类域的方法来确定所属的类别,因此对于类域的交叉或重叠较多的待分类样本集来说,KNN方法较其他方法更为适合

5.该算法比较适用于样本容量比较大的类域的自动分类,而那些样本容量比较小的类域采用这种算法比较容易产生误分类情况

KNN的主要缺点:

1.计算量大,尤其是特征数非常多的时候

2.样本不平衡的时候,对稀有类别的预测准确率低

3.KD树,球树之类的模型建立需要大量的内存

4.是慵懒散学习方法,基本上不学习,导致预测时速度比起逻辑回归之类的算法慢

5.相比决策树模型,KNN模型的可解释性不强

评论 1
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值