AVL树和红黑树(中)

目录

前言

红黑树的定义及特性

红黑树的实现 

红黑树节点的定义

Insert的实现

 红黑树与AVL树比较


前言

上一章节中,我们介绍了AVL的一些功能,这节我们主要学习一下红黑树的实现。

红黑树的定义及特性

定义

红黑树是一种自平衡的二叉搜索树,它通过一系列规则来维持平衡,而不是像AVL树那样追求严格的平衡。红黑树的节点被标记为红色或黑色,并通过以下规则确保树的平衡:

  1. 每个节点不是红色就是黑色。
  2. 根节点是黑色的。
  3. 如果一个节点是红色的,则它的两个子节点必须是黑色的。
  4. 对于每个节点,从该节点到其所有后代叶节点的简单路径上,均包含相同数目的黑色节点。
  5. 每个叶子节点(空节点)都是黑色的。

特性

  • 近似平衡:红黑树不追求严格的平衡,而是通过上述规则确保树的近似平衡。这种平衡机制使得红黑树在最坏情况下也能保证查找、插入和删除操作的时间复杂度为O(log n)。
  • 高效操作:与AVL树相比,红黑树在插入和删除操作时可能需要的旋转次数更少,因此在某些情况下可能具有更好的性能。

红黑树的实现 

红黑树节点的定义

与AVL树不同的是,红黑树通过节点的颜色来实现近似平衡,为了实现这个效果,我们定义一个枚举变量。

enum Colour
{
	RED,
	BLACK
};

template<class T>
struct RBTreeNode
{
	RBTreeNode<T>* _left;
	RBTreeNode<T>* _right;
	RBTreeNode<T>* _parent;

	T _data;

	Colour _col;

	RBTreeNode(const T& data)
		:_left(nullptr)
		, _right(nullptr)
		, _parent(nullptr)
		, _data(data)
		, _col(RED)
	{}
};

在这里,我们最开始让节点的颜色为红色,因为红色相比黑色来说,对祖先的影响较小。因为如果新增节点是黑色就需要调整所有路径的黑色数量,比较麻烦。其他和AVL类似。

Insert的实现

先奉上代码:

template<class K, class V>
	bool Insert(const pair<K, V>& kv)
	{
		if (_root == nullptr)
		{
			_root = new Node(kv);
			_root->_col = BLACK;
			return true;
		}

		Node* parent = nullptr;
		Node* cur = _root;

		while (cur)
		{
			if (cur->_kv.first < kv.first)
			{
				parent = cur;
				cur = cur->_right;
			}
			else if (cur->_kv.first > kv.first)
			{
				parent = cur;
				cur = cur->_left;
			}
			else
			{
				return false;
			}
		}

		// 新增节点给红色
		cur = new Node(kv);
		cur->_col = RED;
		if (parent->_kv.first < kv.first)
		{
			parent->_right = cur;
			cur->_parent = parent;
		}
		else
		{
			parent->_left = cur;
			cur->_parent = parent;
		}

		while (parent && parent->_col == RED)
		{
			Node* grandfather = parent->_parent;
			if (parent == grandfather->_left)
			{
				//     g
				//   p   u
				// c
				Node* uncle = grandfather->_right;
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上更新处理
					cur = grandfather;
					parent = cur->_parent;
				}
				else
				{
					if (cur == parent->_left)
					{    
						// 单旋
						//     g
						//   p
						// c
						RotateR(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						// 双旋
						//     g
						//   p
						//     c
						RotateL(parent);
						RotateR(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
			else  // parent == grandfather->_right
			{
				//     g
				//   u   p 
				//          c
				//
				Node* uncle = grandfather->_left;
				if (uncle && uncle->_col == RED)
				{
					// 变色
					parent->_col = uncle->_col = BLACK;
					grandfather->_col = RED;

					// 继续往上处理
					cur = grandfather;
				}
				else
				{
					if (cur == parent->_right)
					{
						RotateL(grandfather);
						parent->_col = BLACK;
						grandfather->_col = RED;
					}
					else
					{
						//     g
						//   u   p 
						//     c
						//
						RotateR(parent);
						RotateL(grandfather);
						cur->_col = BLACK;
						grandfather->_col = RED;
					}

					break;
				}
			}
		}

		_root->_col = BLACK;

		return true;
	}
因为 新节点的默认颜色是红色 ,因此:如果 其双亲节点的颜色是黑色,没有违反红黑树任何
性质 ,则不需要调整;但 当新插入节点的双亲节点颜色为红色时,就违反了性质三不能有连
在一起的红色节点 ,此时需要对红黑树分情况来讨论:
情况一 : cur 为红, p 为红, g 为黑, u 存在且为红
解决方式:将 p,u 改为黑, g 改为红,然后把 g 当成 cur ,继续向上调整。

 当是情况一时,我们只需要让p,u变为黑色,让g变为红色继续向上调整,若g为根节点,那么结束循环后直接将颜色改为黑色,这里可能会疑惑为什么不直接将g节点的颜色改为黑色,因为g这棵树不一定是一棵完整的树,有可能是一棵子树,如果改变它的颜色将会影响到其他树。如下面这种情况:

如果完成一次调整后发现g的祖先是红色,那么将继续进行调整,直到合理为止。

情况二 : cur 为红, p 为红, g 为黑, u 不存在 /u 存在且为黑
解决方法:
p g 的左孩子, cur p 的左孩子,则进行右单旋;
p g 的右孩子, cur p 的右孩子,则进行左单旋。
p g 变色 --p 变黑, g 变红
u情况的说明:
1.如果u节点不存在,则cur一定是新插入节点,因为如果cur不是新插入节点.
则cur和p一定有一个节点的颜色是黑色,就不满足性质4:每条路径黑色节点个
数相同。
2.如果u节点存在,则其一定是黑色的(因为最开始判断的是u为红色,不成立的话一定为黑色),那么cur节点原来的颜色一定是黑色的,现在看到其是红色的原因是因为cur的子树在调整的过程中将cur节点的颜色由黑色改成红色。
如图p为g的左孩子,cur为p的左孩子,这时候出现了左边高的情况,就需要进行右单旋。完成旋转之后,将p改为黑色,g改为红色,这是满足了条件,不需要再向上调整了。
情况三 : cur 为红, p 为红, g 为黑, u 不存在 /u 存在且为黑
解决方法:
p g 的左孩子, cur p 的右孩子,则针对 p 做左右双旋;
p g 的右孩子, cur p 的左孩子,则针对 p 做右左双旋。
c为黑,g为红。

 

这这就实现了红黑树的Insert。

下面是左旋右旋代码:

	void RotateL(Node* parent)
	{
		Node* subR = parent->_right;
		Node* subRL = subR->_left;

		parent->_right = subRL;
		subR->_left = parent;

		Node* parentParent = parent->_parent;

		parent->_parent = subR;
		if (subRL)
			subRL->_parent = parent;

		if (_root == parent)
		{
			_root = subR;
			subR->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subR;
			}
			else
			{
				parentParent->_right = subR;
			}

			subR->_parent = parentParent;
		}
	}

	void RotateR(Node* parent)
	{
		Node* subL = parent->_left;
		Node* subLR = subL->_right;

		parent->_left = subLR;
		if (subLR)
			subLR->_parent = parent;

		Node* parentParent = parent->_parent;

		subL->_right = parent;
		parent->_parent = subL;

		if (_root == parent)
		{
			_root = subL;
			subL->_parent = nullptr;
		}
		else
		{
			if (parentParent->_left == parent)
			{
				parentParent->_left = subL;
			}
			else
			{
				parentParent->_right = subL;
			}

			subL->_parent = parentParent;
		}
	}

 红黑树与AVL树比较

红黑树和 AVL 树都是高效的平衡二叉树,增删改查的时间复杂度都是 O(log_2 N) ,红黑树不追
求绝对平衡,其只需保证最长路径不超过最短路径的 2 倍,相对而言,降低了插入和旋转的次数,
所以在经常进行增删的结构中性能比 AVL 树更优,而且红黑树实现比较简单,所以实际运用中红
黑树更多。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值