已预先训练好了一个识别猫、狗的二分类CNN模型,持久化在了一个cat_vs_dog.pb的文件中。现需要用其进行图片检测。
1.代码
读取训练好的pb文件,用来进行图片的检测,代码为:
import tensorflow as tf
import numpy as np
from PIL import Image
FILEPATH = 'F:/PycharmProjects/deepLearning/cnn_cat&dog/data/image/check/2.jpg' # 检测文件地址
MODELPATH = 'cat_vs_dog.pb' # pb文件
SIZE = [224, 224] # 检测图片规格
DIC = {0: 'cat', 1: 'dog'} # 定义字典,保存标签和类别的映射关系
# 图片转化为数组
def get_check_data(path, size):
img = Image.open(path)
img = img.resize((size[1], size[0]), Image.ANTIALIAS)
img = np.asarray(img, dtype="int32")
img = img.astype(np.float32)
img = img.reshape((img.shape[0], img.shape[1], 3))
img = img * (1. / 255) - 0.5
return np.array([img])
# 检测
def check(filename, modelname, size):
data = get_check_data(filename, size)
with tf.Graph().as_default():
output_graph_def = tf.GraphDef()
with open(modelname, "rb") as f: # 读取pb文件
output_graph_def.ParseFromString(f.read())
_ = tf.import_graph_def(output_graph_def, name="")
sess = tf.InteractiveSession()
init = tf.global_variables_initializer()
sess.run(init)
input_x = sess.graph.get_tensor_by_name("input:0")
keep_prob = sess.graph.get_tensor_by_name("keep_prob:0")
out_y = sess.graph.get_tensor_by_name("fc3:0")
softmax = tf.nn.softmax(out_y)
y = sess.run(softmax, feed_dict={input_x: data, keep_prob: 1.})
prediction_labels = np.argmax(y)
print("label:", prediction_labels)
print("this is a %s" % DIC[prediction_labels])
sess.close()
def main(_):
check(FILEPATH, MODELPATH, SIZE)
if __name__ == '__main__':
main(None)
2.结果展示
要检测的图片为下面第二个图片:
结果为: