显卡为GTX1070Ti,这是2017年下半年新出的卡,性能接近GTX1080。
一.安装显卡驱动
1.下载驱动
到官网下载:https://www.geforce.com/drivers
选择显卡型号
下载后是一个名为NVIDIA-Linux-x86_64-390.48.run的文件
2.安装编译环境gcc、kernel-devel、kernel-headers
如果系统已经安装过了就不用再装了,这时需要注意kernel-devel、kernel-headers一定要和本机的kernel版本号对应,不然驱动无法加载到内核。
yum -y install gcc
可以使用如下命令安装本机kernel对应版本的kernel-devel和kernel-headers
yum -y install "kernel-devel-uname-r == $(uname -r)"
yum -y install "kernel-headers-uname-r == $(uname -r)"
如果没有对应的版本,先升级下kernel:
yum -y update kernel
3.修改/etc/modprobe.d/blacklist.conf文件,以阻止nouveau模块的加载
添加blacklist nouveau,注释掉blacklist nvidiafb
4.重新建立initramfs image文件
mv /boot/initramfs-$(uname -r).img /boot/initramfs-$(uname -r).img.bak
dracut /boot/initramfs-$(uname -r).img $(uname -r)
5.修改/etc/inittab,使系统开机进入init 3文本模式
将最后一行“id:5:initdefault:”修改成“id:3:initdefault:”
6.重启reboot
7.运行驱动程序
./NVIDIA-Linux-x86_64-375.39.run --kernel-source-path=/usr/src/kernels/<kernel版本号> -k $(uname -r)
按照提示选择y或n
安装好后用nvidia-smi验证是否成功:

二.安装CUDA 9.0
从官网下载:https://developer.nvidia.com/cuda-90-download-archive
根据自己的系统选择下载:

下载完成后如下进行安装:
./cuda_9.0.176_384.81_linux.run
按照提示选择y或n,第一项为显卡驱动,我们已经安装过了,选n,剩下的都选y就行了。
三.安装cuDNN7.0.5
依然从官网下载:https://developer.nvidia.com/rdp/cudnn-archive
不过需要先注册,注册完下载后
tar -zxvf cudnn-9.0-linux-x64-v7.tgz
解压得到cuda这个文件夹
cd cuda
cp include/cudnn.h /usr/local/cuda/include
cp lib64/libcudnn* /usr/local/cuda/lib64
chmod 755 /usr/local/cuda/include/cudnn.h /usr/local/cuda/lib64/libcudnn*
四.安装GPU版tensorflow
pip install tensorflow-gpu
目前是1.7.0版,该版支持CUDA9.0+cuDNN7.0.5。
到此,环境安装完毕,可以进行深度学习了。