扩展欧几里德算法Java实现和青蛙相遇

问题衔接:

http://poj.org/problem?id=1061

Description

两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。 
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。 

Input

输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。

Output

输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"

Sample Input

1 2 3 4 5

Sample Output

4


先说一下扩展欧几里得算法

对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然
存在整数对 x,y ,使得 gcd(a,b)=ax+by。
int exGcd(int a,int b,int &x,int &y)
{
    if(b==0)
    {
        x=1;y=0;
        return a;
    }
    int r=exGcd(b,a%b,x,y);
    int t=x;x=y;y=t-a/b*y;
    return r;
}
求解 x,y的方法的理解
设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,a>b>0 时
设 ax 1+ by 1= gcd(a,b);
bx 2+ (a mod b)y 2= gcd(b,a mod b);
根据朴素的 欧几里德原理有 gcd(a,b) = gcd(b,a mod b);
则:ax 1+ by 1= bx 2+ (a mod b)y 2;
即:ax 1+ by 1= bx 2+ (a - [a / b] * b)y 2=ay 2+ bx 2- [a / b] * by 2;
也就是ax 1+ by1 == ay 2+ b(x 2- [a / b] *y 2);
根据恒等定理得:x 1=y 2; y 1=x 2- [a / b] *y 2;
这样我们就得到了求解 x 1,y 1 的方法:x 1,y 1 的值基于 x 2,y 2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
java 实现代码如下:

public static long[] extend_gcd(long a,long b){
	    long ans;
	    long[] result=new long[3];
	    if(b==0)
	    {
	    	result[0]=a;
	    	result[1]=1;
	    	result[2]=0;
	        return result;
	    }
	    long [] temp=extend_gcd(b,a%b);
	    ans = temp[0];
	    result[0]=ans;
	    result[1]=temp[2];
    	result[2]=temp[1]-(a/b)*temp[2];
	    return result;
	}
返回的数组中,第一个值是最大公约数,第二个值表示C++语言实现中的x,第三个值表示y。

解题思路:

  假设n>m
  根据题意,可以得到方程:
  kL=y+nd-(x+md)

 (n-m)d-kL=x-y
  现在就可以用扩展欧几里得算法解决了

根据扩展欧几里得算法,求出了aX+bY=gcd(a,b)(0)的一组解(x,y),要求解的是aX+bY=c(1)的最小整数解。

将式子1两边同时除以d=gcd(a,b),如果d不能整除c,说明式1没有整数解,除完后得a'X+b'Y=c'(2),将式子0两边同时除以d,得a'X+b'Y=1,显然(2)式的解就是(c'x,c'y),所有整数解的集合为(c'x+b'k,c'y-a'k)(其中k是任意整数)。因为要求最小整数解,所以还要再处理一下,以c'x+b'k为例,它的最小整数值为:(c'x%b'+b')%b',第一步是为了让它成为绝对值小于b'的整数,然后因为可能会变为负数所以加b',又因为可能原本是正数,加b'后大于b',所以又对b'取模。

import java.util.Scanner;

public class Main {
	public static void main(String[] args) {
       Scanner cin=new Scanner(System.in);
       long x=cin.nextLong();
       long y=cin.nextLong();
       long m=cin.nextLong();
       long n=cin.nextLong();
       long L=cin.nextLong();
       long a=m-n,b=L,c=y-x;  
       if(a<0){  
           a=-a;  
           c=-c;  
       }  
       long[] d=extend_gcd(a,b);  
       if((m==n&&x!=y)||c%d[0]!=0)  
           System.out.println("Impossible");  
       else{  
           b=b/d[0];  
           c=c/d[0];  
           d[1]=c*d[1];  
           System.out.println((d[1]%b+b)%b);  
       } 
	}
	public static long[] extend_gcd(long a,long b){
	    long ans;
	    long[] result=new long[3];
	    if(b==0)
	    {
	    	result[0]=a;
	    	result[1]=1;
	    	result[2]=0;
	        return result;
	    }
	    long [] temp=extend_gcd(b,a%b);
	    ans = temp[0];
	    result[0]=ans;
	    result[1]=temp[2];
    	result[2]=temp[1]-(a/b)*temp[2];
	    return result;
	}
}




评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值