问题衔接:
http://poj.org/problem?id=1061
Description
两只青蛙在网上相识了,它们聊得很开心,于是觉得很有必要见一面。它们很高兴地发现它们住在同一条纬度线上,于是它们约定各自朝西跳,直到碰面为止。可是它们出发之前忘记了一件很重要的事情,既没有问清楚对方的特征,也没有约定见面的具体位置。不过青蛙们都是很乐观的,它们觉得只要一直朝着某个方向跳下去,总能碰到对方的。但是除非这两只青蛙在同一时间跳到同一点上,不然是永远都不可能碰面的。为了帮助这两只乐观的青蛙,你被要求写一个程序来判断这两只青蛙是否能够碰面,会在什么时候碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
我们把这两只青蛙分别叫做青蛙A和青蛙B,并且规定纬度线上东经0度处为原点,由东往西为正方向,单位长度1米,这样我们就得到了一条首尾相接的数轴。设青蛙A的出发点坐标是x,青蛙B的出发点坐标是y。青蛙A一次能跳m米,青蛙B一次能跳n米,两只青蛙跳一次所花费的时间相同。纬度线总长L米。现在要你求出它们跳了几次以后才会碰面。
Input
输入只包括一行5个整数x,y,m,n,L,其中x≠y < 2000000000,0 < m、n < 2000000000,0 < L < 2100000000。
Output
输出碰面所需要的跳跃次数,如果永远不可能碰面则输出一行"Impossible"
Sample Input
1 2 3 4 5
Sample Output
4
先说一下扩展欧几里得算法
对于不完全为 0 的非负整数 a,b,gcd(a,b)表示 a,b 的最大公约数,必然
存在整数对 x,y ,使得 gcd(a,b)=ax+by。
int exGcd(int a,int b,int &x,int &y)
{
if(b==0)
{
x=1;y=0;
return a;
}
int r=exGcd(b,a%b,x,y);
int t=x;x=y;y=t-a/b*y;
return r;
}
求解 x,y的方法的理解
设 a>b。
1,显然当 b=0,gcd(a,b)=a。此时 x=1,y=0;
2,a>b>0 时
设 ax
1+ by
1= gcd(a,b);
bx
2+ (a mod b)y
2= gcd(b,a mod b);
根据朴素的
欧几里德原理有 gcd(a,b) = gcd(b,a mod b);
则:ax
1+ by
1= bx
2+ (a mod b)y
2;
即:ax
1+ by
1= bx
2+ (a - [a / b] * b)y
2=ay
2+ bx
2- [a / b] * by
2;
也就是ax
1+ by1 == ay
2+ b(x
2- [a / b] *y
2);
根据恒等定理得:x
1=y
2; y
1=x
2- [a / b] *y
2;
这样我们就得到了求解 x
1,y
1 的方法:x
1,y
1 的值基于 x
2,y
2.
上面的思想是以递归定义的,因为 gcd 不断的递归求解一定会有个时候 b=0,所以递归可以结束。
java 实现代码如下:
public static long[] extend_gcd(long a,long b){
long ans;
long[] result=new long[3];
if(b==0)
{
result[0]=a;
result[1]=1;
result[2]=0;
return result;
}
long [] temp=extend_gcd(b,a%b);
ans = temp[0];
result[0]=ans;
result[1]=temp[2];
result[2]=temp[1]-(a/b)*temp[2];
return result;
}
返回的数组中,第一个值是最大公约数,第二个值表示C++语言实现中的x,第三个值表示y。
解题思路:
假设n>m
根据题意,可以得到方程:
kL=y+nd-(x+md)
(n-m)d-kL=x-y
现在就可以用扩展欧几里得算法解决了
根据扩展欧几里得算法,求出了aX+bY=gcd(a,b)(0)的一组解(x,y),要求解的是aX+bY=c(1)的最小整数解。
将式子1两边同时除以d=gcd(a,b),如果d不能整除c,说明式1没有整数解,除完后得a'X+b'Y=c'(2),将式子0两边同时除以d,得a'X+b'Y=1,显然(2)式的解就是(c'x,c'y),所有整数解的集合为(c'x+b'k,c'y-a'k)(其中k是任意整数)。因为要求最小整数解,所以还要再处理一下,以c'x+b'k为例,它的最小整数值为:(c'x%b'+b')%b',第一步是为了让它成为绝对值小于b'的整数,然后因为可能会变为负数所以加b',又因为可能原本是正数,加b'后大于b',所以又对b'取模。
import java.util.Scanner;
public class Main {
public static void main(String[] args) {
Scanner cin=new Scanner(System.in);
long x=cin.nextLong();
long y=cin.nextLong();
long m=cin.nextLong();
long n=cin.nextLong();
long L=cin.nextLong();
long a=m-n,b=L,c=y-x;
if(a<0){
a=-a;
c=-c;
}
long[] d=extend_gcd(a,b);
if((m==n&&x!=y)||c%d[0]!=0)
System.out.println("Impossible");
else{
b=b/d[0];
c=c/d[0];
d[1]=c*d[1];
System.out.println((d[1]%b+b)%b);
}
}
public static long[] extend_gcd(long a,long b){
long ans;
long[] result=new long[3];
if(b==0)
{
result[0]=a;
result[1]=1;
result[2]=0;
return result;
}
long [] temp=extend_gcd(b,a%b);
ans = temp[0];
result[0]=ans;
result[1]=temp[2];
result[2]=temp[1]-(a/b)*temp[2];
return result;
}
}