试题编号: | 201509-4 |
试题名称: | 高速公路 |
时间限制: | 1.0s |
内存限制: | 256.0MB |
问题描述: |
问题描述
某国有
n个城市,为了使得城市间的交通更便利,该国国王打算在城市之间修一些高速公路,由于经费限制,国王打算第一阶段先在部分城市之间修一些单向的高速公路。
现在,大臣们帮国王拟了一个修高速公路的计划。看了计划后,国王发现,有些城市之间可以通过高速公路直接(不经过其他城市)或间接(经过一个或多个其他城市)到达,而有的却不能。如果城市A可以通过高速公路到达城市B,而且城市B也可以通过高速公路到达城市A,则这两个城市被称为便利城市对。 国王想知道,在大臣们给他的计划中,有多少个便利城市对。
输入格式
输入的第一行包含两个整数
n,
m,分别表示城市和单向高速公路的数量。
接下来 m行,每行两个整数 a, b,表示城市 a有一条单向的高速公路连向城市 b。
输出格式
输出一行,包含一个整数,表示便利城市对的数量。
样例输入
5 5
1 2 2 3 3 4 4 2 3 5
样例输出
3
样例说明
城市间的连接如图所示。有3个便利城市对,它们分别是(2, 3), (2, 4), (3, 4),请注意(2, 3)和(3, 2)看成同一个便利城市对。
评测用例规模与约定
前30%的评测用例满足1 ≤
n ≤ 100, 1 ≤
m ≤ 1000;
前60%的评测用例满足1 ≤ n ≤ 1000, 1 ≤ m ≤ 10000; 所有评测用例满足1 ≤ n ≤ 10000, 1 ≤ m ≤ 100000。 |
求出一共有几个强连通分量,然后对于每一块强连通分量,顶点数为n,则这块里的城市对数目为n*(n-1)/2,将所有的连通块城市个数累加即可。
#include<bits/stdc++.h>
#define inf 0x3f3f3f3f
#define N 10000+10
using namespace std;
stack<int>sta;
vector<int>gra[N];
int dfn[N],low[N],now,vis[N],sum,num[N];
void tarjan(int s)
{
vis[s]=2;
dfn[s]=low[s]=++now;
sta.push(s);
for(int i=0; i<gra[s].size(); i++)
{
int t=gra[s][i];
if(!dfn[t])
tarjan(t),low[s]=min(low[s],low[t]);
else if(vis[t]==2)
low[s]=min(low[s],dfn[t]);
}
if(low[s]==dfn[s])
{
sum++;
while(!sta.empty())
{
int t=sta.top();
sta.pop();
vis[t]=1;
num[sum]++;
if(t==s)break;
}
}
}
int main()
{
int u,v,m,n;
cin>>n>>m;
memset(dfn,0,sizeof(dfn));
memset(low,0,sizeof(low));
memset(vis,0,sizeof(vis));
memset(num,0,sizeof(num));
now=sum=0;
for(int i=1; i<=n; i++)
gra[i].clear();
while(!sta.empty())
sta.pop();
for(int i=0; i<m; i++)
{
cin>>u>>v;
gra[u].push_back(v);
}
for(int i=1; i<=n; i++)
if(!dfn[i])
tarjan(i);
int ans=0;
for(int i=1; i<=sum; i++)
ans += num[i]*(num[i]-1)/2;
cout<<ans<<endl;
return 0;
}