9.证据和概率
基本概念:用贝叶斯规则组合简单证据;通过假设条件独立进行概率推断
代表技巧:朴素贝叶斯;证据提升
例子:用广告瞄准线上客户
概率性的组合证据
联结概率和独立
贝叶斯规则
将贝叶斯规则应用到数据科学
条件独立和朴素贝叶斯
朴素贝叶斯的优缺点
证据“提升”的一个模型
例子:脸书“喜欢”中的证据提升
行为中的证据:针对用户的广告
总结
第九章 证据和概率
我们可以将我们所知道的关于数据实例的事情视为针对目标的不同值的证据。我们对数据实例了解的事情表示为实例的功能。如果我们知道每个特征给出的证据的强度,我们可以应用原则性方法来概率地组合证据,以得出关于目标值的结论。我们将根据训练数据确定任何特定证据的强度。
**
这段话给我的感觉就是。
算法本质上是思维的体现,一个个数学公式,体现的就是不同角度,看待同一件事情的思维。这种不同就是创新。
1.创新教育本质上就是鼓励不同,鼓励个性化,鼓励自我认同和自我发展。
2.学习算法,绝不是知道他的原理就可以了,而是要体会不同算法,背后不同的思维。
**
在线广告例子:
有针对性的投放广告。预测那些客户会接受广告营销(这是预测在商业中的应用)
有个问题:
我们该如何描述消费者?
其中一个方法是,收集他在网上浏览记录,哪些方面?
可能相关的,如金融,体育,娱乐,烹饪等的博客。可能会选择几千个非常受欢迎的内容,或者更多,但有些内容,如拖拉机,风扇页面,我们不太考虑。
人类擅长直觉判断,但是拙于精准计算。数学正好可以弥补人类在精度方面的弱势,但是这不等于拿起数学的人,就要放弃人的固有优势,直觉判断。总之,增强理解力,了解真相,真相会使人自由,需要直觉和数学。
我们不应该完全依赖于自己的直觉判断能力(这也是为什么要进行数据分析)
我们希望历史数据能够估计证据(数值描述)的方向和强度。
然后用一个框架,来评估证据,将其结合起来,估计结果的可能性。
这里我们感兴趣的是p(C|E),E是证据(某个特征量),C是某一类事件。
但是有一个问题:
在这个例子中,有没有这种可能性:
因为我们可能将成千上万个网站的浏览都考虑在内。
我们要预测的证据集,与我们的训练集中任何一个证据集都不一样,甚至毫不相关?
(在垃圾邮件分类中也有类似的问题:某个邮件与训练集中的邮件没有一样的,甚至单个来说,想关性微小)
因此,我们会将每个证据分开考虑,然后组合证据。
这里的E是一个事件(特征向量)