https://learning.oreilly.com/library/view/data-science-for/9781449374273/
这本书重点在于讲解商业数据分析背后的重点原则。帮助人形成一套科学的应用数据分析的流程。
对于有数据分析基础知识的人来说,可以作为一种融会贯通的思维练习。
前言
1.介绍:数据分析思考
数据机会的普遍存在
案例:法国飓风
案例:预测客户流失
数据科学,工程,和数据驱动决策制定
数据处理和“大数据”
从大数据1.0到大数据2.0
作为战略资产的数据和数据科学能力
数据分析思考
这本书
数据挖掘和数据科学,再访
化学不是关于试管的:数据科学VS数据科学家的工作
总结
这本书适合:
与数据科学家共事的商务人士,主导数据科学导向的项目和数据科学相关的风投人士。
试图用数据科学解决商务问题的开发者
有抱负的数据科学家
这本书重点在于介绍商务数据科学背后的原则,而非算法细节。
读者不需要深厚的数学素养,但是内容依旧具有技术性。因为它不是一个全局概览性的树。
这本书横跨展望问题,到应用数据科学技巧,到部署结果提升决策制定水平的整个过程。
概念适合三大类:
1.关于数据科学如何植入到组织中的概念,包括吸引,构建,培养数据科学团队;数据科学如何转化为竞争优势的方法;与数据科学团队相处的战术概念
2.数据分析思维的大体方法。帮助人识别合适的数据和考虑合适的方法。概念包括数据挖掘过程以及不同复杂度的数据挖掘任务
3.真正从数据中挖掘知识的整体概念。
这本书不光被本系的MBA喜欢,其他理工学生也喜欢。还被其他几个学校作为教材。
第一章 介绍:数据分析思考
要有大大的梦想,小梦想不能驱动人心——歌德
过去十五年在商务基础设施方面有了广阔的投资,这改善了在企业各方面手机数据的能力实质上商业的各个方面现在都对数据收集敞开大门而且经常甚至配备了数据收集装备:运营,制造,供应链管理,消费者行为,营销表现,工作流程等等。与此同时,信息正在诸如市场趋向,行业新闻,和竞争者运动方面有更广泛的可用性。这种对数据广泛的可用性让人对从信息中抽取有用信息的理论更感兴趣,那就是——数据科学领域。
**
商业的各个层级都有数据,而且可用性日趋增大,数据科学就是从数据中抽取有用信息。
**
数据机会普遍存在
随着大量数据可用,几乎各行各业的公司都在应用数据提高竞争优势。过去,公司会雇佣统计学家,建模师和分析师手动探索数据集,但是数据的体量和多样性已经远远手动分析的能力。同时,计算机已经更强大,网络无处不在,可以连接数据集和更广更深分析的算法已经开发出来。种种现象的汇聚让数据科学原则和数据挖掘技术的商业应用大大扩展。
营销领域现主要用于目标营销,线上广告,交叉销售推广。客户关