两种python调包进行拉丁超立方采样(lhs)

最近在把代码从matlab往python搬运,整理一下一些小问题

方法1

使用scipy,但是这个好像行数比较多,看官网教程copy了一个,感觉略有麻烦,感觉还是第二个比较方便。

这个官网的链接:
scipy.stats.qmc.LatinHypercube — SciPy v1.9.2 Manual

import numpy as np
from scipy.stats import qmc

sampler = qmc.LatinHypercube(d=2,seed=1)
sample = sampler.random(100)
xh = qmc.scale(sample, lb, ub)

方法2

用pyDOE这个包,这个明显比第一个方便,一行代码就能解决。

这个看例子的话直接点进去看源码就行,没太找到官网

import numpy as np
from pyDOE import lhs

data=lb+(ub-lb)*lhs(2,100)

评论 5
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值