时间限制:
20000ms
单点时限:
1000ms
内存限制:
256MB
-
5 1000 144 990 487 436 210 673 567 58 1056 897
样例输出
-
5940
描述
且说之前的故事里,小Hi和小Ho费劲心思终于拿到了茫茫多的奖券!而现在,终于到了小Ho领取奖励的时刻了!
等等,这段故事为何似曾相识?这就要从平行宇宙理论说起了………总而言之,在另一个宇宙中,小Ho面临的问题发生了细微的变化!
小Ho现在手上有M张奖券,而奖品区有N种奖品,分别标号为1到N,其中第i种奖品需要need(i)张奖券进行兑换,并且可以兑换无数次,为了使得辛苦得到的奖券不白白浪费,小Ho给每件奖品都评了分,其中第i件奖品的评分值为value(i),表示他对这件奖品的喜好值。现在他想知道,凭借他手上的这些奖券,可以换到哪些奖品,使得这些奖品的喜好值之和能够最大。
输入
每个测试点(输入文件)有且仅有一组测试数据。
每组测试数据的第一行为两个正整数N和M,表示奖品的种数,以及小Ho手中的奖券数。
接下来的n行描述每一行描述一种奖品,其中第i行为两个整数need(i)和value(i),意义如前文所述。
测试数据保证
对于100%的数据,N的值不超过500,M的值不超过10^5
对于100%的数据,need(i)不超过2*10^5, value(i)不超过10^3
输出
对于每组测试数据,输出一个整数Ans,表示小Ho可以获得的总喜好值。
import java.util.Scanner;
public class Main {
public int allPackage(int[] w,int[] v,int weight){
int[] dp=new int[weight+1];
for(int i=0;i<w.length;i++){
for(int j=w[i];j<=weight;j++){
dp[j]=Math.max(dp[j-w[i]]+v[i],dp[j]);
}
}
int max=0;
for(int i=0;i<dp.length;i++){
max=Math.max(max,dp[i]);
}
return max;
}
public static void main(String[] args) {
Main main=new Main();
Scanner scan=new Scanner(System.in);
int num=scan.nextInt();
int weight=scan.nextInt();
int[] w=new int[num];
int[] v=new int[num];
for(int i=0;i<num;i++){
w[i]=scan.nextInt();
v[i]=scan.nextInt();
}
System.out.println(main.allPackage(w, v, weight));
}
}