问题 A: X星数列
题目描述
爱冒险的X星人在一艘海底沉船上发现了一串神秘数列,这个数列的前8项如下:
5, 8, 18, 34, 70, 138, 278, 554
X星人对这串数列产生了浓厚的兴趣,他希望你能够帮他发现这个神秘数列中所蕴含的规律,并且编写一个程序输出该数列前N项的和。
当输入一个正整数N时,请输出这个神秘数列前N项的和。
输入
单组输入,每组输入一个正整数N(N<=20)。
输出
输出一个正整数,对应这个数列前N项的和。
样例输入 Copy
4
样例输出 Copy
65
def sum_of_hanshu_dp(n):
if n == 1:
return 5
elif n == 2:
return 8 + 5
# 初始化动态规划数组,并设置前两项的值
dp = [None] * (n + 1)
dp[1] = 5
dp[2] = 8
# 计算剩余项的值并累加求和
total_sum = dp[1] + dp[2]
for i in range(3, n + 1):
dp[i] = 2 * dp[i - 2] + dp[i - 1]
total_sum += dp[i]
return total_sum
n = int(input())
print(sum_of_hanshu_dp(n))
问题 B: X星计数
题目描述
热爱数学的X星人又发现了一个有趣的游戏,游戏名叫做:1的个数。
具体游戏规则为:给定一个十进制正整数,计算对应的二进制整数中有多少个1。
输入
多组输入。
第一行输入一个整数T(1<=T<=100),表示总共有T组数据。
接下来T行,每行一个十进制正整数n,其中1<=n<=1e^9。
输出
对于每一组输入,输出十进制正整数对应的二进制整数中包含的1的个数。
样例输入 Copy
3 1 9 12
样例输出 Copy
1 2 2
#十进制转二进制 bin()
#十进制转八进制 oct()
#十进制转十六进制 hex()
#转十进制 int()
c = int(input())
while c > 0 :
c -= 1
n = int(input())
b = bin(n)
i = 0
for x in b:
if x == '1':
i += 1
print(i)
问题 C: 第k大元素
题目描述
输入一个整数数组,请求出该数组的第k大元素。要求时间复杂度为O(n)。
输入
每组输入包括两行,第一行为k值;第二行为一个整数数组,两个数字之间用空格隔开。数组中元素个数小于1000。
输出
输出第k大元素的值,每个结果占一行
样例输入 Copy
2 3 2 1 5 6 4
样例输出 Copy
5
while 1:
k = int(input())
nums = list(map(int,input().split()))
nums = sorted(nums)
print(nums[len(nums)-k])
问题 D: 棋盘覆盖问题
题目描述
在一个n×n (n = 2k)个方格组成的棋盘中,恰有一个方格与其他方格不同,称该方格为一特殊方格,且称该棋盘为一特殊棋盘。
在棋盘覆盖问题中,要用4种不同形态的L型骨牌覆盖给定的特殊棋盘上除特殊方格以外的所有方格,且任何2个L型骨牌不得重叠覆盖。
输入
多组测试用例,每组测试用例包括两部分,
第一部分为方格的宽度n,
第二部分则为方格,特殊方格为-1,其他方格为0。
输出
输出覆盖后的方案
样例输入 Copy
4 -1 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0
样例输出 Copy
-1 2 4 4 2 2 1 4 3 1 1 5 3 3 5 5
def boardcheck(bh, bl, th, tl, size):
if size == 1:
return
global title
t = title + 1
title = t
s = size // 2
if th < s + bh and tl < s + bl:
boardcheck(bh, bl, th, tl, s)
else:
board[s + bh - 1][s + bl - 1] = t
boardcheck(bh, bl, s + bh - 1, s + bl - 1, s)
if th >= s + bh and tl < bl + s:
boardcheck(bh + s, bl, th, tl, s)
else:
board[bh + s][bl + s - 1] = t
boardcheck(bh + s, bl, bh + s, bl + s - 1, s)
if th < s + bh and tl >= bl + s:
boardcheck(bh, bl + s, th, tl, s)
else:
board[bh + s - 1][bl + s] = t
boardcheck(bh, bl + s, bh + s - 1, bl + s, s)
if th >= s + bh and tl >= s + bl:
boardcheck(s + bh, s + bl, th, tl, s)
else:
board[s + bh][s + bl] = t
boardcheck(s + bh, s + bl, s + bh, s + bl, s)
# 初始化全局变量
global board
global title
title = 0
board = []
# 读取棋盘大小
n = int(input().strip())
while n > 0: # 假设输入正整数表示棋盘大小,0或负数表示结束
board = [[0] * n for _ in range(n)] # 创建指定大小的二维列表
th, tl = -1, -1
# 读取棋盘内容
for i in range(n):
row_input = input().strip().split() # 分割每行的输入
for j, num_str in enumerate(row_input):
board[i][j] = int(num_str) # 将字符串转换为整数
if board[i][j] == -1:
th, tl = i, j
# 调用 boardcheck 函数
boardcheck(0, 0, th, tl, n)
# 打印更新后的棋盘
for row in board:
print(' '.join(map(str, row)))
# 读取下一个棋盘的大小
n = int(input().strip())
title = 0 # 重置全局变量
问题 E: 大整数乘法
题目描述
使用分治算法实现两个大整数相乘。
输入
两个十进制大整数,满足每一个整数长度为2^n且两个大整数的长度相等。(多组数据)
输出
两个大整数的乘积。
样例输入 Copy
1234 5678
样例输出 Copy
7006652
#利用python的大内存
while 1:
a,b = map(int,input().split(' '))
print(a*b)
def karatsuba(x, y):
# 基准情况: 如果x或y小于10,直接相乘返回结果
if x < 10 and y < 10:
return x * y
# 获取x和y的长度
n = max(len(str(x)), len(str(y)))
# 确定分割点
m = n // 2
# 分割x和y为高位和低位
a = x // 10 ** m
b = x % 10 ** m
c = y // 10 ** m
d = y % 10 ** m
# 递归计算三部分乘积
ac = karatsuba(a, c)
bd = karatsuba(b, d)
ab_cd = karatsuba(a + b, c + d) - ac - bd
# 合并结果
product = ac * 10 ** (2 * m) + ab_cd * 10 ** m + bd
return product
def multiply_large_numbers(x, y):
# 转换为正数,并存储符号
sign = -1 if (x < 0) ^ (y < 0) else 1
x = abs(x)
y = abs(y)
# 计算乘积
result = karatsuba(x, y)
# 应用符号
return sign * result
while 1:
x,y = map(int,input().split(' '))
print(multiply_large_numbers(x, y))
问题 F: 整数划分问题之备忘录法
题目描述
使用备忘录法编写一个程序,求一个正整数n的所有划分个数。
例如,输入3,输出3;输入4,输出5。
输入
多组输入,每一组是一个正整数n。
输出
输出划分数。
样例输入 Copy
3 4
样例输出 Copy
3 5
def dynamic_get_partition_count(n, max_num):
# 初始化二维列表,用于存储动态规划的状态
dp = [[0] * (max_num + 1) for _ in range(n + 1)]
for i in range(1, n + 1):
for j in range(1, min(i, max_num) + 1):
if j == 1 or i == 1:
dp[i][j] = 1
elif j == i:
dp[i][j] = dp[i][j - 1] + 1
elif i - j < j:
dp[i][j] = dp[i - j][i - j] + dp[i][j - 1]
else:
dp[i][j] = dp[i - j][j] + dp[i][j - 1]
# 返回整数n的划分个数,其中最大加数不超过n
return dp[n][max_num]
# 主程序
while True:
n = int(input())
# 调用函数计算并打印n的划分个数,其中最大加数不超过n
count = dynamic_get_partition_count(n, n)
print(count)