问题 A: 神奇魔盒
题目描述
Kimi在刷题挑战赛中取得了优异的成绩,获得了一个神奇的魔盒,这个盒子一共有n个格子,每个格子都有一个按钮,每按一下按钮,相应的格子里就会多出1颗糖。现在盒子里已经有了一些糖,请问Kimi至少还需要按多少次按钮,才能使得每个格子中的糖数都一样多?
输入
第一行包括一个整数n,代表格子数(1<=n<=10^5);
第二行包括n个整数a[1],a[2],......,a[n],代表每个格子里的初始糖数(0<=a[i]<=10^9)。
输出
一个整数,代表Kimi至少需要按按钮的次数。
样例输入 Copy
4 0 1 2 3
样例输出 Copy
6
c语言。python空间超限
#include <stdio.h>
int main() {
int n;
long long arr[100010];
while (scanf("%d", &n) != EOF) {
long long sum_a = 0;
long long max_a = 0;
for (int i = 0; i < n; i++) {
scanf("%lld", &arr[i]);
sum_a += arr[i];
if (arr[i] > max_a) {
max_a = arr[i];
}
}
printf("%lld\n", n * max_a - sum_a);
}
return 0;
}
问题 B: 今年暑假不AC
题目描述
“今年暑假不AC?”
“是的。”
“那你干什么呢?”
“看世界杯呀,笨蛋!”
“@#$%^&*%...”
确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会抛开电脑,奔向电视了。
作为球迷,一定想看尽量多的完整的比赛,当然,作为新时代的好青年,你一定还会看一些其它的节目,比如新闻联播(永远不要忘记关心国家大事)、非常6+7、超级女生,以及王小丫的《开心辞典》等等,假设你已经知道了所有你喜欢看的电视节目的转播时间表,你会合理安排吗?(目标是能看尽量多的完整节目)
输入
输入数据包含多个测试实例,每个测试实例的第一行只有一个整数n(n<=100),表示你喜欢看的节目的总数,然后是n行数据,每行包括两个数据Ti_s,Ti_e (1<=i<=n),分别表示第i个节目的开始和结束时间,为了简化问题,每个时间都用一个正整数表示。n=0表示输入结束,不做处理。
输出
对于每个测试实例,输出能完整看到的电视节目的个数,每个测试实例的输出占一行。
样例输入 Copy
12 1 3 3 4 0 7 3 8 15 19 15 20 10 15 8 18 6 12 5 10 4 14 2 9 0
样例输出 Copy
5
def count_complete_shows(shows):
# 按结束时间对节目进行排序
shows.sort(key=lambda x: x[1])
count = 0
current_end = 0
for start, end in shows:
if start >= current_end:
count += 1
current_end = end
return count
n = int(input())
while n != 0:
shows = []
exp = []
for _ in range(n):
start, end = map(int, input().split())
shows.append((start, end))
exp.append(shows[0])
a = int(input())
print(count_complete_shows(shows))
n = int(input())
问题 C: XP的小视频
题目描述
XP的表哥为他推荐了一些学习计算机编程的小视频,这些视频的播放时间长短不完全相同。现在给定一段时间,你能告诉XP他最多可以看多少个视频吗?每个视频的播放时间和给定的总时间均用分钟为单位。
输入
单组输入数据
第一行为m n
m为给定时间长度(分钟)(0<n,m<=1000)
n表示视频个数
接下来是n个整数代表每个视频的播放时间(每个视频播放时间为不超过1000的正整数)
输出
输出一个整数代表XP最多可以看的视频数。
样例输入 Copy
84 6 65 46 18 76 79 3
样例输出 Copy
3
def max_videos(m, video_times):
# 对视频播放时间进行排序
video_times.sort()
count = 0 # 初始化视频计数器
for time in video_times:
if m >= time: # 如果剩余时间足够播放当前视频
m -= time # 更新剩余时间
count += 1 # 增加视频计数
else:
break # 如果时间不足,结束循环
return count
while 1:
m, n = map(int, input().split())
video_times = list(map(int, input().split()))
print(max_videos(m, video_times))
问题 D: X星人的福利
题目描述
马上就要过年啦!X星球决定给每个人发一份福利,不过这份福利需要排队去X星设置在各个地方的福利发放点领取,福利据说是一个神秘大礼包。
由于每个人在2021年为X星做出的贡献不一样,因此福利包中的礼物也不一样,领取福利所需要的时间也不一样。
现在有N个X星人到达了某一个福利发放点,很遗憾这个福利发放点只有一位工作人员在发放福利包,现在已知每个X星人领取福利包所需要时间(不包括排队等待时间,单位:分钟)。
为了让所有人的平均等待时间最少,需要你设计一个算法来安排领取顺序,请编写程序输出最少平均等待时间(单位:分钟),结果四舍五入保留两位小数。
输入
单组输入,每组输入包含两行。
第1行输入一个正整数N,表示等待领取福利包的X星人的数量(N<=1000)。
第2行输入N个正整数,分别对应N个X星人每人领取福利包所需时间(单位:分钟),每个X星人的领取时间均不会超过100分钟。
输出
输出最少平均等待时间(单位:分钟),结果四舍五入保留两位小数。
样例输入 Copy
4 4 3 1 4
样例输出 Copy
3.25
n = int(input())
times = list(map(int, input().split()))
times.sort()
times.pop(-1)
total_wait_time = 0
cumulative_wait_time = 0
for t in times:
cumulative_wait_time += t
total_wait_time += cumulative_wait_time
print("%.2f" % (total_wait_time/n))
问题 E: 最优装载
题目描述
使用贪心算法求解最优装载问题。
输入
第一行包括集装箱个数n,以及船的装载量C。
接下来n行每行则输入集装箱编号以及其重量。
输出
第二行则为最优装载方案对应的所有集装箱编号(按照装载次序输出,用空格隔开) 。
样例输入 Copy
5 10 1 1 2 2 3 3 4 4 5 5
样例输出 Copy
4 1 2 3 4
def optimal_loading(n, capacity, boxes):
# 按重量对集装箱进行排序
sorted_boxes = sorted(boxes, key=lambda x: x[1])
# 初始化装载的集装箱数量和编号列表
loaded_count = 0
loaded_boxes = []
current_load = 0
# 贪心选择:按顺序选择最轻的集装箱
for box_id, weight in sorted_boxes:
if current_load + weight <= capacity:
loaded_count += 1
current_load += weight
loaded_boxes.append(box_id)
# 输出最多可装载的集装箱数量
print(loaded_count)
# 输出最优装载方案对应的集装箱编号
print(" ".join(map(str, loaded_boxes)))
while 1:
n, C = map(int, input().split())
boxes = []
for _ in range(n):
boxes.append(tuple(map(int, input().split())))
optimal_loading(n, C, boxes)
问题 F: 工作单位
题目描述
在某个城市中住着n个人,现在给定关于这n个人的m条信息(即某2个人认识)。
假设所有认识的人一定属于同一个单位,请计算该城市有多少个单位?
输入
输出
样例输入 Copy
10 4 2 3 4 5 4 8 5 8
样例输出 Copy
7
class UnionFind:
def __init__(self, n):
self.parent = list(range(n))
self.rank = [0] * n
self.count = n # 初始单位数为人数
def find(self, x):
if self.parent[x] != x:
self.parent[x] = self.find(self.parent[x]) # 路径压缩
return self.parent[x]
def union(self, x, y):
rootX = self.find(x)
rootY = self.find(y)
if rootX != rootY:
if self.rank[rootX] > self.rank[rootY]:
self.parent[rootY] = rootX
elif self.rank[rootX] < self.rank[rootY]:
self.parent[rootX] = rootY
else:
self.parent[rootY] = rootX
self.rank[rootX] += 1
self.count -= 1 # 合并后单位数减一
def count_work_units(n, relations):
uf = UnionFind(n)
for relation in relations:
uf.union(relation[0] - 1, relation[1] - 1) # 减1是因为输入从1开始计数
return uf.count
n, m = map(int, input().split())
relations = []
for _ in range(m):
relations.append(list(map(int, input().split())))
print(count_work_units(n, relations))