2024年春季学期《算法分析与设计》练习12

问题 A: 神奇魔盒

题目描述

Kimi在刷题挑战赛中取得了优异的成绩,获得了一个神奇的魔盒,这个盒子一共有n个格子,每个格子都有一个按钮,每按一下按钮,相应的格子里就会多出1颗糖。现在盒子里已经有了一些糖,请问Kimi至少还需要按多少次按钮,才能使得每个格子中的糖数都一样多?

输入

第一行包括一个整数n,代表格子数(1<=n<=10^5);
第二行包括n个整数a[1],a[2],......,a[n],代表每个格子里的初始糖数(0<=a[i]<=10^9)。

输出

一个整数,代表Kimi至少需要按按钮的次数。

样例输入 Copy
4
0 1 2 3
样例输出 Copy
6

c语言。python空间超限

#include <stdio.h>

int main() {
    int n;
    long long arr[100010]; 
    while (scanf("%d", &n) != EOF) {
        long long sum_a = 0;
        long long max_a = 0;
        for (int i = 0; i < n; i++) {
            scanf("%lld", &arr[i]); 
            sum_a += arr[i];
            if (arr[i] > max_a) {
                max_a = arr[i];
            }
        }
        printf("%lld\n", n * max_a - sum_a); 
    }
    return 0;
}

问题 B: 今年暑假不AC

题目描述

“今年暑假不AC?”
“是的。”
“那你干什么呢?”
“看世界杯呀,笨蛋!”
“@#$%^&*%...”

确实如此,世界杯来了,球迷的节日也来了,估计很多ACMer也会抛开电脑,奔向电视了。
作为球迷,一定想看尽量多的完整的比赛,当然,作为新时代的好青年,你一定还会看一些其它的节目,比如新闻联播(永远不要忘记关心国家大事)、非常6+7、超级女生,以及王小丫的《开心辞典》等等,假设你已经知道了所有你喜欢看的电视节目的转播时间表,你会合理安排吗?(目标是能看尽量多的完整节目)

输入

输入数据包含多个测试实例,每个测试实例的第一行只有一个整数n(n<=100),表示你喜欢看的节目的总数,然后是n行数据,每行包括两个数据Ti_s,Ti_e (1<=i<=n),分别表示第i个节目的开始和结束时间,为了简化问题,每个时间都用一个正整数表示。n=0表示输入结束,不做处理。

输出

对于每个测试实例,输出能完整看到的电视节目的个数,每个测试实例的输出占一行。

样例输入 Copy
12
1 3
3 4
0 7
3 8
15 19
15 20
10 15
8 18
6 12
5 10
4 14
2 9
0
样例输出 Copy
5
def count_complete_shows(shows):
    # 按结束时间对节目进行排序
    shows.sort(key=lambda x: x[1])
    count = 0
    current_end = 0

    for start, end in shows:
        if start >= current_end:
            count += 1
            current_end = end

    return count


n = int(input())
while n != 0:
    shows = []
    exp = []
    for _ in range(n):
        start, end = map(int, input().split())
        shows.append((start, end))
        exp.append(shows[0])
    a = int(input())
    print(count_complete_shows(shows))
    n = int(input())

问题 C: XP的小视频

题目描述

XP的表哥为他推荐了一些学习计算机编程的小视频,这些视频的播放时间长短不完全相同。现在给定一段时间,你能告诉XP他最多可以看多少个视频吗?每个视频的播放时间和给定的总时间均用分钟为单位。

输入

单组输入数据

第一行为m n

m为给定时间长度(分钟)(0<n,m<=1000)

n表示视频个数

接下来是n个整数代表每个视频的播放时间(每个视频播放时间为不超过1000的正整数)

输出

输出一个整数代表XP最多可以看的视频数。

样例输入 Copy
84 6
65 46 18 76 79 3
样例输出 Copy
3
def max_videos(m, video_times):
    # 对视频播放时间进行排序
    video_times.sort()
    count = 0  # 初始化视频计数器
    for time in video_times:
        if m >= time:  # 如果剩余时间足够播放当前视频
            m -= time  # 更新剩余时间
            count += 1  # 增加视频计数
        else:
            break  # 如果时间不足,结束循环
    return count


while 1:
    m, n = map(int, input().split())
    video_times = list(map(int, input().split()))

    print(max_videos(m, video_times))

问题 D: X星人的福利

题目描述

马上就要过年啦!X星球决定给每个人发一份福利,不过这份福利需要排队去X星设置在各个地方的福利发放点领取,福利据说是一个神秘大礼包。
由于每个人在2021年为X星做出的贡献不一样,因此福利包中的礼物也不一样,领取福利所需要的时间也不一样。
现在有N个X星人到达了某一个福利发放点,很遗憾这个福利发放点只有一位工作人员在发放福利包,现在已知每个X星人领取福利包所需要时间(不包括排队等待时间,单位:分钟)。
为了让所有人的平均等待时间最少,需要你设计一个算法来安排领取顺序,请编写程序输出最少平均等待时间(单位:分钟),结果四舍五入保留两位小数

输入

单组输入,每组输入包含两行。
第1行输入一个正整数N,表示等待领取福利包的X星人的数量(N<=1000)。
第2行输入N个正整数,分别对应N个X星人每人领取福利包所需时间(单位:分钟),每个X星人的领取时间均不会超过100分钟。

输出

输出最少平均等待时间(单位:分钟),结果四舍五入保留两位小数。

样例输入 Copy
4
4 3 1 4
样例输出 Copy
3.25
n = int(input())
times = list(map(int, input().split()))

times.sort()
times.pop(-1)

total_wait_time = 0
cumulative_wait_time = 0

for t in times:
    cumulative_wait_time += t
    total_wait_time += cumulative_wait_time
print("%.2f" % (total_wait_time/n))

问题 E: 最优装载

题目描述

使用贪心算法求解最优装载问题。

输入
每组输入包括两部分, 
第一行包括集装箱个数n,以及船的装载量C。 
接下来n行每行则输入集装箱编号以及其重量。

 
输出
输出包括两行,第一行为最多可装载的集装箱数量 。
第二行则为最优装载方案对应的所有集装箱编号(按照装载次序输出,用空格隔开) 。
样例输入 Copy
5 10
1 1
2 2
3 3
4 4
5 5
样例输出 Copy
4
1 2 3 4
def optimal_loading(n, capacity, boxes):
    # 按重量对集装箱进行排序
    sorted_boxes = sorted(boxes, key=lambda x: x[1])

    # 初始化装载的集装箱数量和编号列表
    loaded_count = 0
    loaded_boxes = []
    current_load = 0

    # 贪心选择:按顺序选择最轻的集装箱
    for box_id, weight in sorted_boxes:
        if current_load + weight <= capacity:
            loaded_count += 1
            current_load += weight
            loaded_boxes.append(box_id)

    # 输出最多可装载的集装箱数量
    print(loaded_count)
    # 输出最优装载方案对应的集装箱编号
    print(" ".join(map(str, loaded_boxes)))

while 1:
    n, C = map(int, input().split())
    boxes = []
    for _ in range(n):
        boxes.append(tuple(map(int, input().split())))


    optimal_loading(n, C, boxes)

问题 F: 工作单位

题目描述

在某个城市中住着n个人,现在给定关于这n个人的m条信息(即某2个人认识)。

假设所有认识的人一定属于同一个单位,请计算该城市有多少个单位?

输入
第1行的第1个值表示总人数n,第2个值表示总信息数m;第2行开始为具体的认识关系信息
输出
单位的个数
样例输入 Copy
10 4
2 3
4 5
4 8
5 8
样例输出 Copy
7
class UnionFind:
    def __init__(self, n):
        self.parent = list(range(n))
        self.rank = [0] * n
        self.count = n  # 初始单位数为人数

    def find(self, x):
        if self.parent[x] != x:
            self.parent[x] = self.find(self.parent[x])  # 路径压缩
        return self.parent[x]

    def union(self, x, y):
        rootX = self.find(x)
        rootY = self.find(y)
        if rootX != rootY:
            if self.rank[rootX] > self.rank[rootY]:
                self.parent[rootY] = rootX
            elif self.rank[rootX] < self.rank[rootY]:
                self.parent[rootX] = rootY
            else:
                self.parent[rootY] = rootX
                self.rank[rootX] += 1
            self.count -= 1  # 合并后单位数减一

def count_work_units(n, relations):
    uf = UnionFind(n)
    for relation in relations:
        uf.union(relation[0] - 1, relation[1] - 1)  # 减1是因为输入从1开始计数
    return uf.count


n, m = map(int, input().split())
relations = []
for _ in range(m):
    relations.append(list(map(int, input().split())))


print(count_work_units(n, relations))

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值