机器学习环境搭建是一个重要的步骤,它可以让你在一个方便和高效的平台上进行机器学习的开发和测试。本文将介绍如何使用vscode和anaconda来搭建一个适合机器学习的环境,以及如何使用conda虚拟环境来管理不同的项目和依赖包。
vscode和anaconda的安装
vscode是一款轻量级的代码编辑器,它支持多种编程语言,拥有丰富的插件和功能,可以帮助你提高编码的效率和质量。你可以从[vscode官网]Visual Studio Code - Code Editing. Redefined下载并安装vscode,本文不做详细介绍,具体安装及python环境配置步骤请看
Win10安装VSCode并配置Python环境 完整版超详细简单【原创】 - 雨吹桐 - 博客园 (cnblogs.com)
安装完成后,你可以打开vscode,然后在左侧的扩展栏中搜索并安装Python插件。这个插件可以让你在vscode中使用Python的语法高亮,代码补全,调试,格式化等功能。你还可以在设置中选择你想要使用的Python解释器。
anaconda是一个流行的Python发行版,它集成了许多常用的科学计算和数据分析的库,例如numpy, pandas, scikit-learn等。它还提供了conda命令行工具,可以让你方便地创建和管理虚拟环境,以及安装和更新不同的包。你可以从[anaconda官网]下载并安装anaconda。
·一、安装和使用anaconda来搭建Python环境
下面介绍一下如何安装和使用anaconda来搭建Python环境。anaconda是一个集成了许多常用的科学计算和数据分析的库的Python发行版,它也提供了conda工具,可以让你方便地创建和管理虚拟环境,以及安装和更新不同的包。下面是一些安装和配置anaconda的步骤:
- 首先,你需要从anaconda官网或者清华大学开源软件镜像站下载适合你的操作系统和位数的anaconda安装包。例如,如果你使用的是Windows 64位系统,你可以下载Anaconda3-2020.07-Windows-x86_64.exe文件或者其他版本。

- 然后,你需要以管理员身份运行安装包,并按照提示进行安装。一般来说,你可以选择为所有用户安装,选择一个非C盘的路径作为安装目录,不勾选添加anaconda到PATH环境变量(这样可以避免和其他Python版本冲突),不勾选注册anaconda为默认Python 3.8。
- 安装完成后,你可以在开始菜单中找到anaconda相关的程序,例如Anaconda Navigator, Anaconda Prompt, Jupyter Notebook等。你也可以在命令行中输入python或者conda来检查是否安装成功。
- 为了更好地使用anaconda,你还需要手动配置一些环境变量。具体来说,你需要在系统变量的Path中添加以下四个路径(假设你的安装目录是D:\Anaconda):
- D:\Anaconda
- D:\Anaconda\Scripts
- D:\Anaconda\Library\mingw-w64\bin
- D:\Anaconda\Library\bin
- 详细介绍请看:Anaconda的安装及环境配置(超详细)_anaconda环境_Lane.Lin的博客-CSDN博客
检测是否安装成功
1、win+r调出cmd。输入conda,如果如图所示,则安装成功。

2.输入conda --version可以查看版本号

- 这样,你就可以在任何地方使用anaconda的功能了。例如,你可以使用conda create命令来创建一个新的虚拟环境,使用conda activate命令来激活一个虚拟环境,使用conda install命令来安装一个包,使用jupyter notebook命令来启动一个交互式笔记本等。
以上就是我对anaconda的安装和配置的简单介绍。如果你想了解更多的细节和技巧,你可以参考以下一些网上的教程和文章
二、conda虚拟环境的激活
虚拟环境是一种隔离不同项目和依赖包的方法,它可以让你在不同的环境中使用不同版本的Python和包,避免冲突和混乱。conda可以让你轻松地创建和切换虚拟环境。
要创建一个新的虚拟环境(如果不创建默认是在base环境里),你可以在终端中输入以下命令:
conda create -n env_name python=3.8
其中env_name是你想要给虚拟环境起的名字,python=3.8是你想要使用的Python版本。你也可以指定其他需要安装的包,例如:
conda create -n env_name python=3.8 numpy pandas scikit-learn
创建好虚拟环境后,你可以用以下命令来激活它:
conda activate env_name
激活后,你会看到终端中的提示符变成了(env_name),表示你已经进入了虚拟环境。此时,你就可以在这个环境中安装和使用任何你需要的包了。例如我的如下图:

要退出虚拟环境,你可以用以下命令来停用它:
conda deactivate
此外,你还可以用以下命令来查看已经创建的所有虚拟环境:
conda env list

或者用以下命令来删除一个虚拟环境:
conda env remove -n env_name
以上就是这次介绍的全部内容了,希望大家多多支持~
参考文献:
·Win10安装VSCode并配置Python环境 完整版超详细简单【原创】 - 雨吹桐 - 博客园 (cnblogs.com)
·Anaconda的安装及环境配置(超详细)_anaconda环境_Lane.Lin的博客-CSDN博客
总结
本文介绍了如何使用vscode和anaconda来搭建一个适合机器学习的环境,以及如何使用conda虚拟环境来管理不同的项目和依赖包。第一次发博客,希望这篇文章对你有所帮助。如果你有任何问题或建议,请在评论区留言。谢谢!
2308





