基于opencv和PaddleOCR识别身份证信息

1、安装组件

pip install --upgrade paddlepaddle paddleocr

2、完整code

import cv2
import numpy as np
from paddleocr import PaddleOCR

# 初始化 PaddleOCR
use_angle_cls=True, lang="ch", det_db_thresh=0.1, det_db_box_thresh=0.5)


def preprocess_image(image_path):
    """
    使用 OpenCV 对图像进行预处理
    :param image_path: 图像路径
    :return: 预处理后的图像
    """
    # 读取图像
    image = cv2.imread(image_path)
    gray = cv2.cvtColor(image, cv2.COLOR_BGR2GRAY)  # 转换为灰度图像
    blurred = cv2.GaussianBlur(gray, (5, 5), 0)  # 高斯模糊去噪
    _, binary = cv2.threshold(
        blurred, 128, 255, cv2.THRESH_BINARY_INV + cv2.THRESH_OTSU
    )  # 二值化
    return binary


def recognize_id_card(image_path):
    """
    识别身份证信息
    :param image_path: 身份证图像路径
    :return: 识别结果
    """
    # 预处理图像
    preprocessed_image = preprocess_image(image_path)

    # 将预处理后的图像转换为 PaddleOCR 需要的格式
    img = cv2.cvtColor(preprocessed_image, cv2.COLOR_GRAY2BGR)

    # 使用 PaddleOCR 进行文字识别
    result = ocr.ocr(img, cls=True)
    print(result)
    # 提取识别结果
    for line in result:
        for elem in line:
            print(elem[-1][0])  # 打印识别的文本内容


# 示例:识别一张身份证图像
recognize_id_card("card.jpg")

3、调整 PaddleOCR 参数 

        如果某些图像无法识别,可以尝试调整 PaddleOCR 的参数,例如检测阈值、识别模型等。

ocr = PaddleOCR(use_angle_cls=True, lang="ch", det_db_thresh=0.3, det_db_box_thresh=0.6)

说明:

        1、det_db_thresh

         • 作用:文字检测的阈值。该参数控制检测算法的灵敏度,值越低,检测到的文字区域越多,但误检率也越高。

        • 默认值:  0.3

         • 范围:  0.0   到   1.0  

        • 建议:如果检测到的文字区域太少,可以尝试降低该值;如果检测到的区域太多且包含大量误检,可以提高该值。

        2、 det_db_box_thresh  

        • 作用:文字区域的过滤阈值。该参数用于过滤掉低置信度的检测结果,值越高,保留的检测结果越少。

        • 默认值:  0.6  

        • 范围:  0.0   到   1.0  

        • 建议:如果检测到的文字区域中有大量误检,可以提高该值;如果检测到的区域太少,可以降低该值。

评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包

打赏作者

神奇侠2024

你的鼓励将是我创作的最大动力

¥1 ¥2 ¥4 ¥6 ¥10 ¥20
扫码支付:¥1
获取中
扫码支付

您的余额不足,请更换扫码支付或充值

打赏作者

实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值