信息学奥赛一本通C++语言——1035:等差数列末项计算

本文介绍了一个简单的算法问题:如何通过等差数列的前两项计算任意第N项的值,并提供了两种实现方式,一种使用C语言风格的代码,另一种使用C++风格的代码。

摘要生成于 C知道 ,由 DeepSeek-R1 满血版支持, 前往体验 >

【题目描述】
给出一个等差数列的前两项a1,a2,求第n项是多少。

【输入】
一行,包含三个整数a1,a2,n。其中−100≤a1,a2≤100,0<n≤1000。

【输出】
一个整数,即第n项的值。

【输入样例】
1 4 100

【输出样例】
298

代码

#include<cstdio>
using namespace std;
int main()
{
    int a1,a2,n,s;
    scanf("%d%d%d",&a1,&a2,&n) ;
	s=a1+(a2-a1)*(n-1);
	printf("%d\n",s);   
    return 0;
}

代码

#include<iostream>
using namespace std;
int main()
{
    int a1,a2,n,s;
    cin>>a1>>a2>>n;
	s=a1+(a2-a1)*(n-1);
	cout<<s;    
    return 0;
}
### 关于信息学奥赛一本 C++ 题目1542 的解题思路及代码实现 #### 题目描述 题目1542涉及的是一个计算两个整数之间所有奇数之和的问题。给定两个正整数 \( m \) 和 \( n \),求这两个数之间的所有奇数的总和(包括边界上的奇数),其中 \( 1 \leq m, n \leq 10^9 \)[^1]。 #### 解题思路 为了高效解决这个问题,可以采用数学公式来简化计算过程而不是逐一累加所有的奇数。如果能够找到第一个和最后一个位于区间内的奇数,则可以等差数列求和公式快速得出结果: 设最小的大于等于m的第一个奇数为start_odd,最大的小于等于n的奇数为end_odd, 则有: \[ start\_odd = (m \% 2 == 0 ? m + 1 : m), end\_odd = (n \% 2 == 0 ? n - 1 : n) \] 接着利用等差序列求和公式 S=(首+)*数/2 来得到最终的结果。需要注意当输入范围不包含任何奇数的情况下的处理方式[^3]。 #### 代码实现 下面是基于上述分析编写的C++程序片段: ```cpp #include <iostream> using namespace std; int main(){ long long m,n; cin >> m >> n; // 计算区间的起始与结束位置处最接近的奇数值 long long start_odd = ((m % 2 != 0)? m : m + 1); long long end_odd = ((n % 2 != 0)? n : n - 1); // 如果不存在符合条件的奇数直接返回0 if(start_odd > end_odd){ cout << "0"; return 0; } // 使用等差数列求和公式计算并输出结果 long long count = (end_odd - start_odd)/2 + 1; cout << (((start_odd + end_odd) * count ) / 2 ); return 0; } ```
评论
添加红包

请填写红包祝福语或标题

红包个数最小为10个

红包金额最低5元

当前余额3.43前往充值 >
需支付:10.00
成就一亿技术人!
领取后你会自动成为博主和红包主的粉丝 规则
hope_wisdom
发出的红包
实付
使用余额支付
点击重新获取
扫码支付
钱包余额 0

抵扣说明:

1.余额是钱包充值的虚拟货币,按照1:1的比例进行支付金额的抵扣。
2.余额无法直接购买下载,可以购买VIP、付费专栏及课程。

余额充值