1、有限个无穷小的和也是无穷小
2、有界函数与无穷小的乘积仍为无穷小
3、常数与无穷小的乘积仍为无穷小
4、有限个无穷小的乘积任为无穷小
5、如果limf(x)=A,limg(x)=B
limf(x)+limg(x)=A+B
limf(x)-limg(x)=A-B
limf(x)*g(x)=A*B
limf(x)/g(x)=A/B
c为常数
lim[cf(x)] = climf(x)
lim[f(x)]^n= [limf(x)]^n
6、设有数列{xn}和{yn},如果limxn=A,limyn=B,
则lim(xn+yn)= A+B
lim(xn*yn) = A*B
当x→∞时,lim(sinx/x)=0
因为1/x趋向于0,sinx为有界函数,符合第二点
准则一:夹逼准则
{xn}、{yn}、{zn}满足下列条件:
1)yn<=xn<=zn,n=1,2,3......
2)limyn=a,limzn=a,则数列{xn}极限存在,并且limxn=a。
由此推出 当x→0,lim(sinx/x)=1
由此推出 当a(x)是无穷小时,lim[sina(x)/a(x)]=1
准则二:单调有界数列必有极限
单调增加有上界的数列必有极限
单调减少有下界的数列必有极限
由此推出:lim(1+1/n)^n=e
n→∞
在极限lim[1+a(x)]^1/a(x)中,只要a(x)是无穷小,就有lim[1+a(x)]^1/a(x)=e