就是给你他的钩子长度,一开始是1,后来钩子可以改变,然后改变钩子,看能成为啥样。
运用lazy-tag思想,就是区间更新。就是感觉如果要更新的区间刚好就是这个节点的左右边界不用更新下面的每个点,把该节点的sum更新就可以了
#include<cstdio>
#include<cstring>
#include<algorithm>
#include<cmath>
using namespace std;
const int MaxN = 100010;
struct node{
int l , r , lazy , sum , tag;
}tree[MaxN << 2];
void buildT(int l , int r , int rt)
{
tree[rt].l = l;
tree[rt].r = r;
tree[rt].lazy = 0;
tree[rt].tag = 0;
if(l == r){
tree[rt].sum = 1;
return ;
}
int m = (l + r ) >> 1;
buildT(l , m , rt << 1);
buildT(m + 1 , r , rt << 1 | 1);
tree[rt].sum = tree[rt << 1].sum + tree[rt << 1 | 1].sum;
}
void update(int l , int r , int rt , int v)
{
if(tree[rt].l == l && tree[rt].r == r ){
tree[rt].sum = (r - l + 1) * v;
tree[rt].lazy = 1;
tree[rt].tag = v;
return;
}
int m = (tree[rt].l + tree[rt].r) >> 1;
if(tree[rt].lazy == 1){
update(tree[rt].l , m , rt << 1 , tree[rt].tag);
update(m + 1 , tree[rt].r , rt << 1 | 1 , tree[rt].tag);
tree[rt].lazy = 0;
tree[rt].tag = 0;
}
if(r <= m) update(l , r , rt << 1 , v);
else if(l > m) update( l , r ,rt << 1 | 1 , v);
else{
update(l , m , rt << 1 , v);
update(m + 1 , r , rt << 1 | 1 , v);
}
tree[rt].sum = tree[rt << 1].sum + tree[rt << 1 | 1].sum;
}
int main()
{
int i , n , m , l , cnt = 0 , x , y , z , t;
scanf("%d",&t);
while(t--){
cnt++;
scanf("%d%d",&n , &m);
buildT(1 , n , 1);
while(m--){
scanf("%d%d%d", &x , &y , &z);
update(x , y , 1 , z);
}
printf("Case %d: The total value of the hook is %d.\n",cnt , tree[1].sum);
}
return 0;
}