在大数据、大访问量的时代,数据库的性能优化无疑是非常重要的,下面总结了一些优化思路。
1.应该先从宏观架构角度考虑,先通过观察或脚本,确定数据库性能问题是否是周期性的波动。如果是周期性的,一般是访问高峰或缓存雪崩造成的。可以通过增加缓存或更改缓存失效策略,使失效时间分散或夜间访问量低时定时失效。关于缓存雪崩可以参看这篇https://blog.csdn.net/zsh2050/article/details/79515154
2.如果问题没有解决,确定查询速度是否已到基准测试的瓶颈,如果是则应增加数据库机器。基准测试可以使用Sysbench等工具进行测试。
3.如果还没有解决,或者性能问题不是周期波动的,可能是由某条或多条sql语句引起的,这时应该进一步从微观代码层面检查。可以通过工具帮助我们检查有没有sql语句方面的问题,比如mysql数据库,可以使用show processlist或开启慢查询获取有问题的sql语句。
4.获取到问题sql后,可用通过分析工具进行sql分析,比如mysql的profiling及explain。看一下是等待时间长还是执行时间长,这两个时间并非孤立的,如果单条语句执行的快了,对其他语句的锁定的也就少了。
5.如果是语句等待时间长,也就是IO时间长。这种情况经常是因为某条语句执行时间过长,从而造成其它语句等待时间过长。排除这种情况后,可考虑调优服务器参数,如缓冲区、线程数等。
6.如果是语句执行时间长,考虑是否语句本身是否效率低,比如表设计原因造成表关联过多,或没有加索引,或其它语句问题。
以mysql数据库为例,整体流程可参考下图:
已经是2019年了,又快到春节了。我懵懵懂懂过了一年,这一年似乎没有改变。不念过往,不惧将来,不负当下。