排序:
默认
按更新时间
按访问量

论文--NetVLAD: CNN architecture for weakly supervised place recognition--阅读笔记。

关键词:NetVLAD Pooling layer                  triplet-loss                     fmax function                   weakly-supervised-learning 摘要: 针对大规模的位置...

2018-09-05 10:16:10

阅读数:116

评论数:0

python-GIL-多线程的二三事

关键词:GIL、Thread、Ticks、Check、Signal。 主要介绍python多线程和GIL的一些东西。 总结: •CPython的线程是操作系统的原生线程。在Linux上为pthread,在Windows上为Win thread,完全由操作系统调度线程的执行。一个Python解...

2018-08-23 20:09:10

阅读数:26

评论数:0

Ubuntu-有线网络无法上网的问题解决方法汇总

转载别人的,写的很详细很全,值得收藏。 https://blog.csdn.net/u010025211/article/details/75043216 另外,说一下在设置静态IP时,点击右上角的网络按钮,然后点击“编辑连接”,然后在弹出的窗口中选择“增加”,弹出选择框,选择“以太网”,然后...

2018-08-20 11:47:57

阅读数:231

评论数:0

opencv+颜色直方图+相似图像比对

这个是之前学习openCV时做过的,时间长了怕找不到,还是写下来的好。 首先,图像直方图是什么?图像直方图是用以表示数字图像中亮度分布的直方图,标绘了图像中每个亮度值的像素数。 直方图的意义: 1、直方图是图像中像素强度分布的图形表达方式。 2、它统计了每一个强度值所具有的像素个数。 o...

2018-08-13 15:30:38

阅读数:247

评论数:0

论文--Deep Hashing with Category Mask for Fast Video Retrieval--阅读笔记 深度哈希+内容掩码+视频检索

前言 一直在做跟视频相关的工作,对这方面的算法很有兴趣。这篇论文针对短视频内容推荐或者叫检索提出了一种很好的想法,特此记录下来方便自己日后查阅。 第一部分:背景介绍 写过论文的都知道这是常规套路,要先介绍研究背景以及行业水平,说明现在行业所用算法的不足,然后说明自己的算法针对这些问题做了哪些...

2018-07-29 20:41:00

阅读数:108

评论数:0

MSER+SIFT 图像的特征向量提取 python

在做图像检索时,需要提取图像的特征向量。传统的局部特征描述子如SIFT、SURF等,如果不做别的处理,往往会得到大量的特征向量,虽然特征向量的数目越多,对图像的描述越精确,检索的准确率较高,但是这也会增加硬件成本同时也会耗费大量的计算时间。 从博主的试验结果来看,单张图384×256大小,提取出...

2018-07-24 11:54:48

阅读数:165

评论数:8

VLAD学习总结和python实现

工作需要,研究了一些很经典的图像检索算法,逐一记录下来,方便自己复习和大家交流。 这篇博文是关于VLAD(vector of locally aggregated descriptors),即聚合局部描述子的向量,是一种利用图像的局部描述子如:SIFT、SURF、ORB等,做一些聚合的操作,然后...

2018-07-11 18:09:21

阅读数:341

评论数:12

乘积量化学习和实战总结

由于一直在做视频检索相关的工作,不可避免的要和各种图像检索的算法打交道(因为视频最终还是要解码成图像的形式)。乘积量化作为一种很优秀的图像编码方法,博主自然不会错过。在折腾了长达3个月之后,有所小成,特此记录下来,权当复习,同时也希望与相关领域的道友进行交流。一、为什么要用乘积量化乘积量化就是一种...

2018-07-05 17:31:37

阅读数:296

评论数:0

基于自适应聚类的视频关键帧的抽取

由于工作需要,要做海量视频检索。但是视频是一种复杂的文件形式,不能直接拿来做检索。所以,要先将视频解码成图像的形式,借用图像检索即以图搜图的思想来实现,所以如何把很长的视频文件解码并提取关键帧就显的尤为重要。博主在查阅大量论文资料的基础上,总结出了一个切实可行的方案:即利用聚类的思想,把从视频中解...

2018-05-11 15:48:51

阅读数:200

评论数:0

部署已经训练好的caffe网络用于图片分类

博主最近在学习caffe,所以会将每一个关键节点都记录下来,方便自己查看,也希望能够帮到有需要的人!首先,这篇文章是基于你已经能够用自己的数据集训练caffe中现成的深度网络,如letnet、caffenet等。如果这一步你还没有实现,建议查看博主之前的博客,有关于这一块的过程。在你成功的进行了训...

2018-04-19 14:46:38

阅读数:68

评论数:0

caffe 训练自己的数据集或者是imgnet上的数据集

参考这篇优秀的博文,基本上都能够实现训练自己的数据集以及标注过程。https://blog.csdn.net/qq_27923041/article/details/54139887#comments这个小哥的过程很是详细,我不在这里重复,仅在此做一些细节上的补充和说明。首先是数据集的获取,我直接...

2018-04-18 11:10:55

阅读数:79

评论数:0

Jetson TX2 刷机时遇到的坑

工作原因,要在tx2 上做神经网络的嵌入式开发。为此,花费了大约3天的时间在tx2上安装cuda、cudnn、opencv、等网络所需的包和库。中间遇到各种坑,记录下来希望对大家有所帮助,减少搭环境花费的时间,尽快的进行开发工作。 一、至于tx2的安装过程,这里不再赘述,网上有大量的教程。本文主...

2018-04-08 18:56:59

阅读数:464

评论数:5

Ubuntu16.04+cuda8.0+cudnn7.1+caffe+jupyter-notebook

由于工作的需要,要在设备上安装caffe框架进行深度学习的相关工作。折腾了大概两天的时间,中间遇到诸如驱动不匹配、缺少相应的库文件等问题,艰难的安装成功。所以记录下来,希望能够帮到有相同需求和遇到同样问题的童鞋。第一步:首先,你要有个纯净的ubuntu16.04系统。所谓纯净,最基本的要求是你现在...

2018-04-04 11:51:12

阅读数:295

评论数:0

基于BP神经网络图像几何畸变的校正

前言:本文是是博主的毕设课题,同时也是老师的项目。为了完成毕设,博主查阅大量资料,啃了好多篇论文,更有通宵调试代码的经历。现在,写下来既是对自己辛苦工作的总结,也是希望对大家有所帮助。 博主设计的BP神经网络主要针对非线性畸变,核心思想是利用BP神经网络学习出原始图像和畸变图像对应坐标点之间的变...

2018-03-07 09:56:45

阅读数:410

评论数:4

jupyter+tensorflow实现图像的风格转移(style-transfer)

Image-style-transfer 参考来源: https://github.com/ckmarkoh/neuralart_tensorflow https://github.com/log0/neural-style-painting/blob/master/TensorFlo...

2018-02-06 10:30:11

阅读数:206

评论数:0

在单个GPU上实现Mnist +CNN

http://mp.blog.csdn.net/postedit/79135560(tensorflow 安装过程) 接上一篇利用docker搭建的环境,在jupyter下实现一个两层的CNN,利用Mnist手写数据集对它进行训练并实现对测试样本的分类输出分类的正确率。 对CNN原理不清楚...

2018-01-24 16:34:13

阅读数:182

评论数:0

ubuntu16.04-LTS+cuda-9.1+docker+tensorflow-gpu

简单快捷搭建深度学习平台 1、纯手动搭建环境,自己安装tensorflow。网上有很多现有教程,本人按照这些教程安装结果遇到各种各样的问题,在重装了数次系统后果断放弃。如果你喜欢自己动手,并且熟练的使用百度解决问题,可以忽略以下内容。 2、简单说一下手工安装方式: 第一步:安装nvidia显...

2018-01-23 11:01:00

阅读数:2039

评论数:0

提示
确定要删除当前文章?
取消 删除
关闭
关闭