题目描述
给定一个字符串 (s) 和一个字符模式 (p) ,实现一个支持 '?' 和 '*' 的通配符匹配。
'?' 可以匹配任何单个字符。
'*' 可以匹配任意字符串(包括空字符串)。
两个字符串完全匹配才算匹配成功。
说明:
s 可能为空,且只包含从 a-z 的小写字母。
p 可能为空,且只包含从 a-z 的小写字母,以及字符 ? 和 *。
示例 1:
输入:
s = "aa"
p = "a"
输出: false
解释: "a" 无法匹配 "aa" 整个字符串。
示例 2:
输入:
s = "aa"
p = "*"
输出: true
解释: '*' 可以匹配任意字符串。
示例 3:
输入:
s = "cb"
p = "?a"
输出: false
解释: '?' 可以匹配 'c', 但第二个 'a' 无法匹配 'b'。
示例 4:
输入:
s = "adceb"
p = "*a*b"
输出: true
解释: 第一个 '*' 可以匹配空字符串, 第二个 '*' 可以匹配字符串 "dce".
示例 5:
输入:
s = "acdcb"
p = "a*c?b"
输出: false
解题思路
这题没想明白,所以记录一下官方解法,学习思路。
利用动态规划算法。
首先需要确定动态规划的边界条件以及状态转移方程。
用 dp[i][j]表示字符串s的前i个字符和模式p的前j个字符是否能匹配。
在进行状态转移时,我们可以考虑模式p的第j个字符pj,
与之对应的是字符串s中的第i个字符si。
1、如果pj是小写字母,那么si也必须为小写字母,状态转移方程为
dp[i][j] = (si 与 pj 相同) and dp[i-1][j-1]
2、如果pj是'?',不用考虑si的情况
dp[i][j] = dp[i-1][j-1]
3、如果pj是'*',同样不用考虑si的情况,但是'*'可以参与匹配也可以不参与匹配
dp[i][j] = dp[i-1][j] | dp[i][j-1]
dp[i-1][j]表示参与匹配,dp[i][j-1]表示不参与匹配。
边界条件判断:
dp[0][0] = True s,p均为空时返回True
dp[i][0] = False s非空,p为空时返回False
dp[0][j] = True,对于模版p,必须是连续的'*',只要有一个字符就返回False
class Solution:
def isMatch(self, s: str, p: str) -> bool:
m,n = len(s),len(p)
dp = [[False]*(n+1) for _ in range(m+1)]
dp[0][0] = True
for i in range(1,n+1):
if p[i-1] =='*':
dp[0][i] = True
else:
## 因为dp初始值都是False,所以直接break跳出循环即可。
## 循环终止处的值是False。
break
for i in range(1,m+1):
for j in range(1,n+1):
if p[j-1] == '*':
dp[i][j] = dp[i][j-1] | dp[i-1][j]
elif p[j-1] == '?' or s[i-1] == p[j-1]:
dp[i][j] = dp[i-1][j-1]
return dp[m][n]